基于多級多特征混合模型的白血病亞型自動分類
中圖分類號:TP391 文獻(xiàn)標(biāo)志碼:A 文章編號:1001-3695(2025)06-038-1880-07
doi:10.19734/j.issn.1001-3695.2024.08.0354
Automatic classification of leukemia subtypes based on multi-scale multi-feature hybrid model
Gao Mingyang1,Geng Yan2,Yu Xiao3,Pei Bo4,Zhao Juanjuan1,Qiang Yan1,5t(1.ColegeofmuterSece &Tooy(lgeofatSce),anUiestofogin;2.SchoolfsieicalciediclUesitinasspialfieclUTaiyuanO3Uesfd6UfeUf030051,China)
Abstract:Leukemia,ahighlyconcealedcancer,presentssignificantchalengesinearlydetection,makingitafocalpointfor medical professionals.Existing fine-grained clasificationmodelsstrugglewithsmallsampleimbalanceddatasets,leadingto poorperformance in classfying leukemiasubtypes.Toaddressthese issuesandacceleratedoctors’diagnosticspeed while shortening treatment time,this paperproposedamulti-scalemulti-feature hybrid model(MSMFHM)fortheautomaticclassificationofleukemiasubtypesappicable tosmallsampledatasets.The modelfirstly extractedmulti-levelstructural features from imagesusingamulti-scalefeature extractionframeworkcombined withscalingoperationsandaCNNbackbone.Next,amultiscalefusion modulewith atention mechanisms integratedthesemulti-level structural featuresandextracted fine-grained features,effectivelyleveraging therobustnessofCNNinductivebiasandthecomplexglobalmodelingcapabilitiesofTransformers.Finally,toenhance robustnessand mitigate overfiting issues causedbysmallsamples,amulti-feature hybrid module combined texturefeatures withfine-grained features beforeclasification.Adatasetof7156leukemiacellimages,along with otherrelevantpublicdatasets,wascollctedtoevaluatethismethod.Theproposedmodelachievesclasificationaccuraciesof (204號 93.03% and 99.42% on private and public datasets,respectively,outperforming other advanced models. This method accuratelydistinguishedacute leukemia subtypecellsandservesasanefectivedesignapproach forcomputer-aideddiagnosisof leukemia.
Key words:leukemia;medical image processing;multi-scale feature fusion; Transformer
0 引言
全球造成成千上萬人死亡[1]。(剩余17275字)
-
-
- 計算機應(yīng)用研究
- 2025年06期
- 聯(lián)邦學(xué)習(xí)中隱私保護聚合機制綜述...
- 基于區(qū)塊鏈的車聯(lián)網(wǎng)數(shù)據(jù)共享綜述...
- 基于改進(jìn)型多模態(tài)信息融合深度強...
- 基于生成對抗網(wǎng)絡(luò)與漸進(jìn)式融合的...
- 基于特性分流的多模態(tài)對話情緒感...
- 面向視覺-語言模型的遞進(jìn)互提示...
- 多維度交叉注意力融合的視聽分割...
- 基于多模態(tài)表征學(xué)習(xí)的自動音頻字...
- 基于改進(jìn)行為克隆算法的機器人運...
- 基于混合深度強化學(xué)習(xí)的云制造云...
- 考慮故障因素的多機器人動態(tài)任務(wù)...
- 基于物理信息強化學(xué)習(xí)的無人駕駛...
- 基于改進(jìn)多目標(biāo)鯨魚優(yōu)化算法的云...
- 基于ABSA與動態(tài)少樣本提示的...
- 改進(jìn)自適應(yīng)大鄰域搜索算法及其在...
- 基于信息素矩陣優(yōu)化蟻群算法求解...
- 融合局部-全局歷史模式與歷史知...
- 一種面向情緒壓力分布外檢測的多...
- 基于句子轉(zhuǎn)換和雙注意力機制的歸...
- 基于多層特征融合與增強的對比圖...
- 使用NGN算法改進(jìn)不平衡數(shù)值數(shù)...
- 一種基于終端策略的近似漣漪擴散...
- 融合混合提示與位置感知的突發(fā)事...
- 面向說話人日志的多原型驅(qū)動圖神...
- 鄰域變異的黑猩猩多峰優(yōu)化算法...
- 基于增強型差分進(jìn)化算法求解廣義...
- 面向可重構(gòu)陣列的CNN多維融合...
- 一種用于機器聲音異常檢測的AR...
- 基于數(shù)據(jù)驅(qū)動的WSN故障檢測框...
- 一種面向軟件眾包的眾包工人選擇...
- 邊緣計算中動態(tài)服務(wù)器部署與任務(wù)...
- 基于自適應(yīng)差分進(jìn)化算法的時間敏...
- 基于LCVAE-CNN的多任務(wù)...
- 基于多擾動策略的中文對抗樣本生...
- 基于用戶選擇的魯棒與隱私保護聯(lián)...
- 云醫(yī)療環(huán)境下策略可更新的多權(quán)威...
- SP-CPGCN:用于塵肺病分...
- 基于多級多特征混合模型的白血病...
- 結(jié)合多尺度特征與局部采樣描述的...
- 迭代偽點云生成的3D目標(biāo)檢測...
- 分層蒸餾解耦網(wǎng)絡(luò)的低分辨率人臉...
- 基于運動分割的動態(tài)SLAM聯(lián)合...
- 基于預(yù)測劃分卷積神經(jīng)網(wǎng)絡(luò)的全景...