基于用戶選擇的魯棒與隱私保護聯(lián)邦學習方案
Robust and privacy-preserving federated learning scheme based on user selection
Wang Xiaoming1.2,Huang Binrui2+ (1.Colegeflelcge;ofo gy ,Jinan University,Guangzhou 510632,China)
Abstract:Tocounterthevulnerabilitiesofmodelparameters toinferenceandByzantineattcksduringfederatedlearning,this paperproposed arobustand privacy-preserving federated learning scheme basedonuserselection,enhancing thesecurityand reliabilityofmodel training.Itfirstlydesignedauserselectionalgorithmbasedontheconceptof groups constructedonfog servers.Thepurposeofthisalgorithmwastoselectuserswithhighcreditscores tocontribute tothetrainingof theglobal model.Next,itconstructedamethodforfiltering local modelparametersandupdatinguserscoresusingthetestsetfromthe cloudserver,efectivelymitigatingtheinterference frommalicious usersinthemodel training processandprogresivelyexcludingthemfromtraining,therebyenhancingtherobustnessoftheglobalmodel.Finally,itdesignedalightweightencryption algorithmbasedoncloud-fogcollaboration,whichnotonlyefectivelyprotectedtheprivacyofuserlocalmodelparametersbut alsoensuredtheirsecurityduringtheagregationprocess,whilemaintaining highcomputationalandcommunicationeffciency. Buildinguponthecomputationalchallngeof theDifie-Hellman(CDH)problem,itdemonstratedthesecurityof thisscheme, whichresistedvarious atacks,ensuring theglobal model’srobustness whilesafeguarding userdata privacy.Bycomparing with existing schemes andthrough performance analysisand experimental results,the proposal exceled in eficiency.When facing maliciousattackers,the accuracy rates of directly aggregated global models dropped to about 65% ,whereas this scheme maintainedanaccuracyrateclosetothatofasenariowithoutatacks,ffctivelymtigatingtheimpactofatacks.Tus,thissolution offersapractical and efective strategy for federated learning systems todeal with inference and Byzantineattcks.
Keywords:federated learning;robustness;privacy preservation;selecting user
0 引言
隨著機器學習技術(shù)的快速發(fā)展,人工智能在各個領域的應用得到廣泛發(fā)展。(剩余24804字)
- 聯(lián)邦學習中隱私保護聚合機制綜述...
- 基于區(qū)塊鏈的車聯(lián)網(wǎng)數(shù)據(jù)共享綜述...
- 基于改進型多模態(tài)信息融合深度強...
- 基于生成對抗網(wǎng)絡與漸進式融合的...
- 基于特性分流的多模態(tài)對話情緒感...
- 面向視覺-語言模型的遞進互提示...
- 多維度交叉注意力融合的視聽分割...
- 基于多模態(tài)表征學習的自動音頻字...
- 基于改進行為克隆算法的機器人運...
- 基于混合深度強化學習的云制造云...
- 考慮故障因素的多機器人動態(tài)任務...
- 基于物理信息強化學習的無人駕駛...
- 基于改進多目標鯨魚優(yōu)化算法的云...
- 基于ABSA與動態(tài)少樣本提示的...
- 改進自適應大鄰域搜索算法及其在...
- 基于信息素矩陣優(yōu)化蟻群算法求解...
- 融合局部-全局歷史模式與歷史知...
- 一種面向情緒壓力分布外檢測的多...
- 基于句子轉(zhuǎn)換和雙注意力機制的歸...
- 基于多層特征融合與增強的對比圖...
- 使用NGN算法改進不平衡數(shù)值數(shù)...
- 一種基于終端策略的近似漣漪擴散...
- 融合混合提示與位置感知的突發(fā)事...
- 面向說話人日志的多原型驅(qū)動圖神...
- 鄰域變異的黑猩猩多峰優(yōu)化算法...
- 基于增強型差分進化算法求解廣義...
- 面向可重構(gòu)陣列的CNN多維融合...
- 一種用于機器聲音異常檢測的AR...
- 基于數(shù)據(jù)驅(qū)動的WSN故障檢測框...
- 一種面向軟件眾包的眾包工人選擇...
- 邊緣計算中動態(tài)服務器部署與任務...
- 基于自適應差分進化算法的時間敏...
- 基于LCVAE-CNN的多任務...
- 基于多擾動策略的中文對抗樣本生...
- 基于用戶選擇的魯棒與隱私保護聯(lián)...
- 云醫(yī)療環(huán)境下策略可更新的多權(quán)威...
- SP-CPGCN:用于塵肺病分...
- 基于多級多特征混合模型的白血病...
- 結(jié)合多尺度特征與局部采樣描述的...
- 迭代偽點云生成的3D目標檢測...
- 分層蒸餾解耦網(wǎng)絡的低分辨率人臉...
- 基于運動分割的動態(tài)SLAM聯(lián)合...
- 基于預測劃分卷積神經(jīng)網(wǎng)絡的全景...