基于生成對抗網(wǎng)絡(luò)與漸進(jìn)式融合的多模態(tài)實(shí)體對齊
Multimodal entity alignment based on dual-generator shared-adversarial network
Feng Guanga?,Zheng Runting?,Liu Tianxiang?,Yang Yanru?,Lin Jianzhonga, Zhong Tinga,HuangRongcan?,XiangFeng?,LiWeichenb (a.SchoolofAutomation,b.SchoolofComputerScience,Guangdong UniversityofTechnology,Guangzhou510o6,China)
Abstract:Inthefieldofeducation,knowledgegraph fusionplaysacrucialrole.Asacore technologyof knowledge graphfusion,entityalignmentaistoidentifyequivalent entitypairsacrossmultiple knowledge graphs.Most existing entityalignment methodsassume thateachsourceentityhasacorresponding entityinthetargetknowledge graph.However,whenusingcrosslingualandcros-raphetitysets,theproblemofdanglingentitiesarises.Toaddresstisissue,thispaperproposedthedualgeneratorshared-adversarial network entityalignment model(DGSAN-EA).This modelutilized partialparametersharig and anoptimalselectionstrategytotraintwogenerators,selectingtheoptimalgneatortoconditionallgenerateewetisacoss knowledgegraphs,therebyenhancing thedatasetand solving thedangling entityproblem.Furthermore,aprogressive fusion strategyandtheintroductionofdistributionconsistencylossfunctionefectielyresolvethedistortionoffusedfeatureformationandthemisalignmentbetweenmodalitiesinmultimodalentityalignment.Validationonmultiplepublicdatasetsshows that compared to existing multimodal entityalignment models,DGSAN-EAachieveshigher hit@ kand MMRscores,demonstrating itseffectiveness in entity alignment tasks.
Key words:knowledge graph(KG);entity alignment;adversarial network;dual generator;parameter sharing;progresive fusion;distribution consistency
0 引言
在大數(shù)據(jù)時(shí)代背景下,知識圖譜(KG)作為結(jié)構(gòu)化知識表示的重要工具,其應(yīng)用已擴(kuò)展至教育、醫(yī)療、金融等關(guān)鍵領(lǐng)域。(剩余22678字)
-
-
- 計(jì)算機(jī)應(yīng)用研究
- 2025年06期
- 聯(lián)邦學(xué)習(xí)中隱私保護(hù)聚合機(jī)制綜述...
- 基于區(qū)塊鏈的車聯(lián)網(wǎng)數(shù)據(jù)共享綜述...
- 基于改進(jìn)型多模態(tài)信息融合深度強(qiáng)...
- 基于生成對抗網(wǎng)絡(luò)與漸進(jìn)式融合的...
- 基于特性分流的多模態(tài)對話情緒感...
- 面向視覺-語言模型的遞進(jìn)互提示...
- 多維度交叉注意力融合的視聽分割...
- 基于多模態(tài)表征學(xué)習(xí)的自動(dòng)音頻字...
- 基于改進(jìn)行為克隆算法的機(jī)器人運(yùn)...
- 基于混合深度強(qiáng)化學(xué)習(xí)的云制造云...
- 考慮故障因素的多機(jī)器人動(dòng)態(tài)任務(wù)...
- 基于物理信息強(qiáng)化學(xué)習(xí)的無人駕駛...
- 基于改進(jìn)多目標(biāo)鯨魚優(yōu)化算法的云...
- 基于ABSA與動(dòng)態(tài)少樣本提示的...
- 改進(jìn)自適應(yīng)大鄰域搜索算法及其在...
- 基于信息素矩陣優(yōu)化蟻群算法求解...
- 融合局部-全局歷史模式與歷史知...
- 一種面向情緒壓力分布外檢測的多...
- 基于句子轉(zhuǎn)換和雙注意力機(jī)制的歸...
- 基于多層特征融合與增強(qiáng)的對比圖...
- 使用NGN算法改進(jìn)不平衡數(shù)值數(shù)...
- 一種基于終端策略的近似漣漪擴(kuò)散...
- 融合混合提示與位置感知的突發(fā)事...
- 面向說話人日志的多原型驅(qū)動(dòng)圖神...
- 鄰域變異的黑猩猩多峰優(yōu)化算法...
- 基于增強(qiáng)型差分進(jìn)化算法求解廣義...
- 面向可重構(gòu)陣列的CNN多維融合...
- 一種用于機(jī)器聲音異常檢測的AR...
- 基于數(shù)據(jù)驅(qū)動(dòng)的WSN故障檢測框...
- 一種面向軟件眾包的眾包工人選擇...
- 邊緣計(jì)算中動(dòng)態(tài)服務(wù)器部署與任務(wù)...
- 基于自適應(yīng)差分進(jìn)化算法的時(shí)間敏...
- 基于LCVAE-CNN的多任務(wù)...
- 基于多擾動(dòng)策略的中文對抗樣本生...
- 基于用戶選擇的魯棒與隱私保護(hù)聯(lián)...
- 云醫(yī)療環(huán)境下策略可更新的多權(quán)威...
- SP-CPGCN:用于塵肺病分...
- 基于多級多特征混合模型的白血病...
- 結(jié)合多尺度特征與局部采樣描述的...
- 迭代偽點(diǎn)云生成的3D目標(biāo)檢測...
- 分層蒸餾解耦網(wǎng)絡(luò)的低分辨率人臉...
- 基于運(yùn)動(dòng)分割的動(dòng)態(tài)SLAM聯(lián)合...
- 基于預(yù)測劃分卷積神經(jīng)網(wǎng)絡(luò)的全景...