基于句子轉(zhuǎn)換和雙注意力機(jī)制的歸納關(guān)系預(yù)測
Inductive relation prediction based on sentence Transformer and dual attention mechanism
Li Weijun a,b? ,Liu Xueyang2,Liu Shixia,Wang Ziyia,Ding Jianpinga,Su Yileia (a.Colegeofuene&oKbafgs&asellgentossnofateEcs sion,North Minzu University,Yinchuan75oo21,China)
Abstract:Relation predictionisaimportant task in knowledgegraphcompletion,aimedat predicting mising relationships between entities.Existing inductiverelationprediction methodsoften facechalenges inadequatelymodeling semanticand structural information.Toaddress thisisse,thispaper proposedaninductiverelation predictionmodel basedonsentence transformationandadual-atentionmechanism.Theproposedmethodenhancedentitysemanticrepresentationsbyautomaticallyretrievingdescritionsandincorporatesadual-atentionmechanism,whichonsiderededgeandelationawarenes,toacu ratelymodelthecomplexinteractionsbetweeentities.Firstly,itextractedtheclosedsubgraphofthetargettripleanduseda random walk strategytosearchformuli-hoprelational paths.Thesetriplesand pathswerethen transformedinto natural language sentences,generating semanticall rich sentence embeddings.Next,it updated the subgraph embeddings using GCN andbidirectionalGRU,combiningsentenceandsubgraphembeddings tocapturebothstructuralandsemanticinformationExperimentalresultsonthree public datasets—WN18RR,F(xiàn)B15k-237,andNELL-995—demonstratethattheproposed method outperformsexisting methodsinbothtransformationandinductiverelationpredictiontasks,validatingtheimportanceof the dual-attention mechanismandsentence transformationin improving model performance.Thisapproach efectively enhances the accuracy and efficiency of relation prediction in knowledge graphs.
Key words:knowledge graph(KG);inductiverelation prediction;sentence Transformer;dual atention mechanism;random walk pathfinding strategy
0 引言
知識圖譜(KG)是一種用于表示和存儲客觀世界知識的圖形化知識庫,通過三元組方式進(jìn)行形式化描述,廣泛應(yīng)用于網(wǎng)絡(luò)搜索[1]、社區(qū)檢測[2]和推薦系統(tǒng)[3]等任務(wù)。(剩余17867字)
-
-
- 計(jì)算機(jī)應(yīng)用研究
- 2025年06期
- 聯(lián)邦學(xué)習(xí)中隱私保護(hù)聚合機(jī)制綜述...
- 基于區(qū)塊鏈的車聯(lián)網(wǎng)數(shù)據(jù)共享綜述...
- 基于改進(jìn)型多模態(tài)信息融合深度強(qiáng)...
- 基于生成對抗網(wǎng)絡(luò)與漸進(jìn)式融合的...
- 基于特性分流的多模態(tài)對話情緒感...
- 面向視覺-語言模型的遞進(jìn)互提示...
- 多維度交叉注意力融合的視聽分割...
- 基于多模態(tài)表征學(xué)習(xí)的自動音頻字...
- 基于改進(jìn)行為克隆算法的機(jī)器人運(yùn)...
- 基于混合深度強(qiáng)化學(xué)習(xí)的云制造云...
- 考慮故障因素的多機(jī)器人動態(tài)任務(wù)...
- 基于物理信息強(qiáng)化學(xué)習(xí)的無人駕駛...
- 基于改進(jìn)多目標(biāo)鯨魚優(yōu)化算法的云...
- 基于ABSA與動態(tài)少樣本提示的...
- 改進(jìn)自適應(yīng)大鄰域搜索算法及其在...
- 基于信息素矩陣優(yōu)化蟻群算法求解...
- 融合局部-全局歷史模式與歷史知...
- 一種面向情緒壓力分布外檢測的多...
- 基于句子轉(zhuǎn)換和雙注意力機(jī)制的歸...
- 基于多層特征融合與增強(qiáng)的對比圖...
- 使用NGN算法改進(jìn)不平衡數(shù)值數(shù)...
- 一種基于終端策略的近似漣漪擴(kuò)散...
- 融合混合提示與位置感知的突發(fā)事...
- 面向說話人日志的多原型驅(qū)動圖神...
- 鄰域變異的黑猩猩多峰優(yōu)化算法...
- 基于增強(qiáng)型差分進(jìn)化算法求解廣義...
- 面向可重構(gòu)陣列的CNN多維融合...
- 一種用于機(jī)器聲音異常檢測的AR...
- 基于數(shù)據(jù)驅(qū)動的WSN故障檢測框...
- 一種面向軟件眾包的眾包工人選擇...
- 邊緣計(jì)算中動態(tài)服務(wù)器部署與任務(wù)...
- 基于自適應(yīng)差分進(jìn)化算法的時間敏...
- 基于LCVAE-CNN的多任務(wù)...
- 基于多擾動策略的中文對抗樣本生...
- 基于用戶選擇的魯棒與隱私保護(hù)聯(lián)...
- 云醫(yī)療環(huán)境下策略可更新的多權(quán)威...
- SP-CPGCN:用于塵肺病分...
- 基于多級多特征混合模型的白血病...
- 結(jié)合多尺度特征與局部采樣描述的...
- 迭代偽點(diǎn)云生成的3D目標(biāo)檢測...
- 分層蒸餾解耦網(wǎng)絡(luò)的低分辨率人臉...
- 基于運(yùn)動分割的動態(tài)SLAM聯(lián)合...
- 基于預(yù)測劃分卷積神經(jīng)網(wǎng)絡(luò)的全景...