基于ABSA與動(dòng)態(tài)少樣本提示的主觀知識(shí)對(duì)話回復(fù)生成模型
Subjective knowledge dialogue response generation model based on ABSA and dynamic few-shot prompting
Rao Dongning,Zhuang Jietao (School ofComputers,Guangdong UniversityofTechnology,Guangzhou 51ooo6,China)
Abstract:Inthelatest task-oriented dialoguesystem challenges,efectivelyutilizing subjective knowledge(e.g.,personal opinions)iscrucialforaddresingusers’specificneeds.However,duetotheiherentlysubjectivenatureofsuchknowledge, howto efectively integrate and leveragethis information hasbecome a key focus of research.This paper proposeda method called DynSense,aimedataddresing thechallngeof generatingcomprehensiveand generalizedresponsesfrommultiplerelevant subjective user opinions.DynSense firstlyemployedaspect-basedsentiment analysis (ABSA)to parse the aspects and sentiment polarities withinsubjective knowledge snippets,aligning them with theuser’squery.Then,it utilizedanadvanced dialoguemodel thatcombined thedialoguecontext withABSA-enhanced information to generateresponses.AspeciallydesignedDynMatchalgorithm guidedthe model to generate morerelevantresponses bydynamicallselecting high-quality knowledgefragmentsmost similartothecurrentqueryasfew-shot prompts.The experimental resultsdemonstrate thatDynSense exhibits exceptionalabilityincapturing latentsemantic featuresand emotional tendencies,generating precise,comprehensive, andhighlyalignedresponses basedonpastuserreviews.Compared toexisting models,DynSenseshowssignificantimprovements across various evaluation metrics on the SK-TOD benchmark.
Key words:task-oriented dialogue systems;subjectiveknowledge;aspect-based sentiment analysis (ABSA);dynamic fewshot prompts
0引言
經(jīng)典的任務(wù)導(dǎo)向型對(duì)話系統(tǒng)主要依賴于事實(shí)性知識(shí),例如文獻(xiàn)[1\~4]中所使用的常見問題(FAQ)數(shù)據(jù)庫。(剩余18756字)
-
-
- 計(jì)算機(jī)應(yīng)用研究
- 2025年06期
- 聯(lián)邦學(xué)習(xí)中隱私保護(hù)聚合機(jī)制綜述...
- 基于區(qū)塊鏈的車聯(lián)網(wǎng)數(shù)據(jù)共享綜述...
- 基于改進(jìn)型多模態(tài)信息融合深度強(qiáng)...
- 基于生成對(duì)抗網(wǎng)絡(luò)與漸進(jìn)式融合的...
- 基于特性分流的多模態(tài)對(duì)話情緒感...
- 面向視覺-語言模型的遞進(jìn)互提示...
- 多維度交叉注意力融合的視聽分割...
- 基于多模態(tài)表征學(xué)習(xí)的自動(dòng)音頻字...
- 基于改進(jìn)行為克隆算法的機(jī)器人運(yùn)...
- 基于混合深度強(qiáng)化學(xué)習(xí)的云制造云...
- 考慮故障因素的多機(jī)器人動(dòng)態(tài)任務(wù)...
- 基于物理信息強(qiáng)化學(xué)習(xí)的無人駕駛...
- 基于改進(jìn)多目標(biāo)鯨魚優(yōu)化算法的云...
- 基于ABSA與動(dòng)態(tài)少樣本提示的...
- 改進(jìn)自適應(yīng)大鄰域搜索算法及其在...
- 基于信息素矩陣優(yōu)化蟻群算法求解...
- 融合局部-全局歷史模式與歷史知...
- 一種面向情緒壓力分布外檢測(cè)的多...
- 基于句子轉(zhuǎn)換和雙注意力機(jī)制的歸...
- 基于多層特征融合與增強(qiáng)的對(duì)比圖...
- 使用NGN算法改進(jìn)不平衡數(shù)值數(shù)...
- 一種基于終端策略的近似漣漪擴(kuò)散...
- 融合混合提示與位置感知的突發(fā)事...
- 面向說話人日志的多原型驅(qū)動(dòng)圖神...
- 鄰域變異的黑猩猩多峰優(yōu)化算法...
- 基于增強(qiáng)型差分進(jìn)化算法求解廣義...
- 面向可重構(gòu)陣列的CNN多維融合...
- 一種用于機(jī)器聲音異常檢測(cè)的AR...
- 基于數(shù)據(jù)驅(qū)動(dòng)的WSN故障檢測(cè)框...
- 一種面向軟件眾包的眾包工人選擇...
- 邊緣計(jì)算中動(dòng)態(tài)服務(wù)器部署與任務(wù)...
- 基于自適應(yīng)差分進(jìn)化算法的時(shí)間敏...
- 基于LCVAE-CNN的多任務(wù)...
- 基于多擾動(dòng)策略的中文對(duì)抗樣本生...
- 基于用戶選擇的魯棒與隱私保護(hù)聯(lián)...
- 云醫(yī)療環(huán)境下策略可更新的多權(quán)威...
- SP-CPGCN:用于塵肺病分...
- 基于多級(jí)多特征混合模型的白血病...
- 結(jié)合多尺度特征與局部采樣描述的...
- 迭代偽點(diǎn)云生成的3D目標(biāo)檢測(cè)...
- 分層蒸餾解耦網(wǎng)絡(luò)的低分辨率人臉...
- 基于運(yùn)動(dòng)分割的動(dòng)態(tài)SLAM聯(lián)合...
- 基于預(yù)測(cè)劃分卷積神經(jīng)網(wǎng)絡(luò)的全景...