基于改進(jìn)型多模態(tài)信息融合深度強(qiáng)化學(xué)習(xí)的自主超聲掃描方法
Autonomous ultrasound scanning method based on improved multimodal information fusion and deep reinforcement learning
Xu Jiakaia,Lu Q1υ? ,Li Xiangyunb,Li Kanga,c (a.ColegefclcnUeibelCte pital,Sichuan University,Chengdu 610o65,China)
Abstract:Toaddressthe isses of low training accuracy,prolonged trainingtime,and lowsuccess rateof scanning tasks in ultrasound scanning basedondeep reinforcementlearning(DRL),this paper proposed an autonomous ultrasound scaning method basedonimproved multimodalinformation fusionandDRL.Firstly,the methodintegratedultrasound images,dualview probe manipulation images,and 6D tactile feedback to provide comprehensive multimodal perception.To accurately capturespatiotemporal informationinmultimodaldataandachieveeficientfeaturefusion,thispaperdesignedamultimodal featureextractionandfusionmodulebasedontheself-atentionmechanism(SA).Secondly,itformulatedthe6Dposedecisionmaking task fortherobotasaDRLproblem.Andthis paperdesignedahybridrewardfunction toemulatetoprofesionalultrasonographers.Lastly,to addresslocaloptima andslowconvergence inDRL training,this paper introduced the DSAC-PERDP algorithm.Tests inreal environmentsdemonstrate thattheproposed method improves scanning accuracy,task successrate, and training speed by 49.8% , 13.4% and 260.0% ,respectively,compared to baseline models.Moreover,the method maintainsrobust performanceunder interferenceconditions.Thesefindingsvalidatethattheproposedapproach notonlysignificantlyimprovesscanningaccuracy,task succssrate,and trainingefciencybutalsoexhibitsnotableanti-interferencecapabilities.
Key words:autonomous ultrasound scanning;deepreinforcement learning(DRL);multimodal;self-atention mechanism; DSAC-PERDP algorithm
0 引言
醫(yī)學(xué)超聲因其非侵入性、安全性和成本效益而成為廣泛應(yīng)用的診斷工具[1,2],常用于腎臟、肝臟、心臟病學(xué)、產(chǎn)科等多個(gè)醫(yī)學(xué)領(lǐng)域[3,4]。(剩余19202字)
-
-
- 計(jì)算機(jī)應(yīng)用研究
- 2025年06期
- 聯(lián)邦學(xué)習(xí)中隱私保護(hù)聚合機(jī)制綜述...
- 基于區(qū)塊鏈的車聯(lián)網(wǎng)數(shù)據(jù)共享綜述...
- 基于改進(jìn)型多模態(tài)信息融合深度強(qiáng)...
- 基于生成對抗網(wǎng)絡(luò)與漸進(jìn)式融合的...
- 基于特性分流的多模態(tài)對話情緒感...
- 面向視覺-語言模型的遞進(jìn)互提示...
- 多維度交叉注意力融合的視聽分割...
- 基于多模態(tài)表征學(xué)習(xí)的自動(dòng)音頻字...
- 基于改進(jìn)行為克隆算法的機(jī)器人運(yùn)...
- 基于混合深度強(qiáng)化學(xué)習(xí)的云制造云...
- 考慮故障因素的多機(jī)器人動(dòng)態(tài)任務(wù)...
- 基于物理信息強(qiáng)化學(xué)習(xí)的無人駕駛...
- 基于改進(jìn)多目標(biāo)鯨魚優(yōu)化算法的云...
- 基于ABSA與動(dòng)態(tài)少樣本提示的...
- 改進(jìn)自適應(yīng)大鄰域搜索算法及其在...
- 基于信息素矩陣優(yōu)化蟻群算法求解...
- 融合局部-全局歷史模式與歷史知...
- 一種面向情緒壓力分布外檢測的多...
- 基于句子轉(zhuǎn)換和雙注意力機(jī)制的歸...
- 基于多層特征融合與增強(qiáng)的對比圖...
- 使用NGN算法改進(jìn)不平衡數(shù)值數(shù)...
- 一種基于終端策略的近似漣漪擴(kuò)散...
- 融合混合提示與位置感知的突發(fā)事...
- 面向說話人日志的多原型驅(qū)動(dòng)圖神...
- 鄰域變異的黑猩猩多峰優(yōu)化算法...
- 基于增強(qiáng)型差分進(jìn)化算法求解廣義...
- 面向可重構(gòu)陣列的CNN多維融合...
- 一種用于機(jī)器聲音異常檢測的AR...
- 基于數(shù)據(jù)驅(qū)動(dòng)的WSN故障檢測框...
- 一種面向軟件眾包的眾包工人選擇...
- 邊緣計(jì)算中動(dòng)態(tài)服務(wù)器部署與任務(wù)...
- 基于自適應(yīng)差分進(jìn)化算法的時(shí)間敏...
- 基于LCVAE-CNN的多任務(wù)...
- 基于多擾動(dòng)策略的中文對抗樣本生...
- 基于用戶選擇的魯棒與隱私保護(hù)聯(lián)...
- 云醫(yī)療環(huán)境下策略可更新的多權(quán)威...
- SP-CPGCN:用于塵肺病分...
- 基于多級多特征混合模型的白血病...
- 結(jié)合多尺度特征與局部采樣描述的...
- 迭代偽點(diǎn)云生成的3D目標(biāo)檢測...
- 分層蒸餾解耦網(wǎng)絡(luò)的低分辨率人臉...
- 基于運(yùn)動(dòng)分割的動(dòng)態(tài)SLAM聯(lián)合...
- 基于預(yù)測劃分卷積神經(jīng)網(wǎng)絡(luò)的全景...