融合局部-全局歷史模式與歷史知識頻率的時序知識圖譜補全方法
Time-series knowledge graph completion method combining local-global historica pattern and historical knowledge frequency
Jia Kai a,b? , Wang Yangpinga,b, Yang Jingyu a,b , Zhang Xiquan a,b (aSchoolofcoic&fioingolValilExpetalcgCtefilsit&Control,LanzhouJiaotongUniversity,Lanzhou73oo7O,China)
Abstract:TKGsare dynamicrepresentations of evolvingfacts,and theircompletion task involvespredicting futureunkown factsbasedonhistoricaldata.Thekeyliesinunderstanding historicaldata.However,existingmodelshavelimitationsincapturingthefeaturesofhistoricaleventsandcannotaccuratelyextractusefulinformationfromtimestamps.Fromtheperspective of historical evolution,consideringthesequence,frequency,andperiodicpaternsofhistorical factscomprehensivelysbeneficialfor predicting future facts.Therefore,thispaper proposeda temporal knowledgegraphcompletion algorithm(LGHHKF)thatintegratedlocal-globalhistoricalpaternsandhistoricalknowledgefrequency.Specificall,itfrstlyusedalocale current graph encoder network to modelthe intrinsicassciationsand dynamic evolutionof eventsatadjacent timestamps. Then,ituseda global historicalencodernetworktoconsiderallrelevantfactsatprevious timestampstoavoidlosingntitiesor relationsthatdidn'tappearatadjacenttimestamps.Next,itlearedthefrequencyscoresof thesefactsthroughahistorical knowledge frequencylearning module toenrich the model’sprediction basis.Finally,afterbalancing between thetwo encoders,itusedaperiodicdecodertoperforminferenceandcompletion.Thepaperusedfourbenchmark datasets to evaluate theproposedmethod,andtheexperimentalresultsprovethatLGH-HKFishighlycompetitivecomparedtoothercurrentmodels in most cases.
Key words:temporal knowledge graph;completionalgorithm;local cyclic graph encoder;global history encoder;frequency of historical knowledge
0 引言
知識圖譜補全技術對現(xiàn)在熱門的輔助搜索、推薦系統(tǒng)、問答系統(tǒng)等領域都有重大的意義,只有當知識足夠完善,下游任務的準確率才能得到進一步的提升[1]。(剩余17658字)
- 聯(lián)邦學習中隱私保護聚合機制綜述...
- 基于區(qū)塊鏈的車聯(lián)網(wǎng)數(shù)據(jù)共享綜述...
- 基于改進型多模態(tài)信息融合深度強...
- 基于生成對抗網(wǎng)絡與漸進式融合的...
- 基于特性分流的多模態(tài)對話情緒感...
- 面向視覺-語言模型的遞進互提示...
- 多維度交叉注意力融合的視聽分割...
- 基于多模態(tài)表征學習的自動音頻字...
- 基于改進行為克隆算法的機器人運...
- 基于混合深度強化學習的云制造云...
- 考慮故障因素的多機器人動態(tài)任務...
- 基于物理信息強化學習的無人駕駛...
- 基于改進多目標鯨魚優(yōu)化算法的云...
- 基于ABSA與動態(tài)少樣本提示的...
- 改進自適應大鄰域搜索算法及其在...
- 基于信息素矩陣優(yōu)化蟻群算法求解...
- 融合局部-全局歷史模式與歷史知...
- 一種面向情緒壓力分布外檢測的多...
- 基于句子轉換和雙注意力機制的歸...
- 基于多層特征融合與增強的對比圖...
- 使用NGN算法改進不平衡數(shù)值數(shù)...
- 一種基于終端策略的近似漣漪擴散...
- 融合混合提示與位置感知的突發(fā)事...
- 面向說話人日志的多原型驅動圖神...
- 鄰域變異的黑猩猩多峰優(yōu)化算法...
- 基于增強型差分進化算法求解廣義...
- 面向可重構陣列的CNN多維融合...
- 一種用于機器聲音異常檢測的AR...
- 基于數(shù)據(jù)驅動的WSN故障檢測框...
- 一種面向軟件眾包的眾包工人選擇...
- 邊緣計算中動態(tài)服務器部署與任務...
- 基于自適應差分進化算法的時間敏...
- 基于LCVAE-CNN的多任務...
- 基于多擾動策略的中文對抗樣本生...
- 基于用戶選擇的魯棒與隱私保護聯(lián)...
- 云醫(yī)療環(huán)境下策略可更新的多權威...
- SP-CPGCN:用于塵肺病分...
- 基于多級多特征混合模型的白血病...
- 結合多尺度特征與局部采樣描述的...
- 迭代偽點云生成的3D目標檢測...
- 分層蒸餾解耦網(wǎng)絡的低分辨率人臉...
- 基于運動分割的動態(tài)SLAM聯(lián)合...
- 基于預測劃分卷積神經(jīng)網(wǎng)絡的全景...