面向視覺-語言模型的遞進(jìn)互提示學(xué)習(xí)
doi: 10.19734/j. issn. 1001-3695.2024.10.0446
ProgCoPL: progressive co-prompting learning for vision-language models
Tao Junjie1,Zhang Weifeng1,2+,Wang Yuxia3,Miao Yi1 ,Xu Ling1 (1.Schoolofuece&o(lflellgee),ZgSUesit,g;2. Schoolfee&niUitinZ;i Institute,Jiaxing Zhejiang 31400o,China)
Abstract:Thelarge-scalepre-trainedvision-language modelCLIPaligns imagesandtexts inasharedsemanticspace,demonstratingrobust generalizationcapabilitiesacrossdiversedownstream tasks.However,existing promptlearning methodsoftenindependently insert learnable prompt vectors intoeach layerofCLIP's visualand text encoders.This appoach results in limitedcross-modalinteraction,withindependentpromptsacrosslayersfailing toefectivelyguidetheencoders incapturing taskrelevant information.Toaddress these isses,thispaper proposedProgCoPL.This method introduced text-guided promptvectorsintothevisualencoderlayersandvision-guidedpromptvectorsintothetextencoderlayers,therebyenhancingcro-modal interactionandalignment.Furthermore,ProgCoPL incorporated informationtransmissionchannelsbetweenpromptvectors acrosslayers,enablinghierarchicalandprogressiveintegrationof taskspecificinformation.Experimentson11datasetsshow thatProgCoPLeficientlyadaptsCLIPtodownstreamtasks,significantlyimprovingitscros-datasetgeneralizationability. ProgCoPLoutperforms existing methods in multiplegeneralization tests,particularlyachieving notable advancements incrossdataset scenarios.
Key Words:multimodal;prompt learning;vision-language model; Transformer encoder
0 引言
大規(guī)模視覺-語言模型(visual languagemodel,V-L Model)已經(jīng)成為當(dāng)今計(jì)算機(jī)跨模態(tài)智能領(lǐng)域的核心技術(shù)之一。(剩余19086字)
-
-
- 計(jì)算機(jī)應(yīng)用研究
- 2025年06期
- 聯(lián)邦學(xué)習(xí)中隱私保護(hù)聚合機(jī)制綜述...
- 基于區(qū)塊鏈的車聯(lián)網(wǎng)數(shù)據(jù)共享綜述...
- 基于改進(jìn)型多模態(tài)信息融合深度強(qiáng)...
- 基于生成對(duì)抗網(wǎng)絡(luò)與漸進(jìn)式融合的...
- 基于特性分流的多模態(tài)對(duì)話情緒感...
- 面向視覺-語言模型的遞進(jìn)互提示...
- 多維度交叉注意力融合的視聽分割...
- 基于多模態(tài)表征學(xué)習(xí)的自動(dòng)音頻字...
- 基于改進(jìn)行為克隆算法的機(jī)器人運(yùn)...
- 基于混合深度強(qiáng)化學(xué)習(xí)的云制造云...
- 考慮故障因素的多機(jī)器人動(dòng)態(tài)任務(wù)...
- 基于物理信息強(qiáng)化學(xué)習(xí)的無人駕駛...
- 基于改進(jìn)多目標(biāo)鯨魚優(yōu)化算法的云...
- 基于ABSA與動(dòng)態(tài)少樣本提示的...
- 改進(jìn)自適應(yīng)大鄰域搜索算法及其在...
- 基于信息素矩陣優(yōu)化蟻群算法求解...
- 融合局部-全局歷史模式與歷史知...
- 一種面向情緒壓力分布外檢測的多...
- 基于句子轉(zhuǎn)換和雙注意力機(jī)制的歸...
- 基于多層特征融合與增強(qiáng)的對(duì)比圖...
- 使用NGN算法改進(jìn)不平衡數(shù)值數(shù)...
- 一種基于終端策略的近似漣漪擴(kuò)散...
- 融合混合提示與位置感知的突發(fā)事...
- 面向說話人日志的多原型驅(qū)動(dòng)圖神...
- 鄰域變異的黑猩猩多峰優(yōu)化算法...
- 基于增強(qiáng)型差分進(jìn)化算法求解廣義...
- 面向可重構(gòu)陣列的CNN多維融合...
- 一種用于機(jī)器聲音異常檢測的AR...
- 基于數(shù)據(jù)驅(qū)動(dòng)的WSN故障檢測框...
- 一種面向軟件眾包的眾包工人選擇...
- 邊緣計(jì)算中動(dòng)態(tài)服務(wù)器部署與任務(wù)...
- 基于自適應(yīng)差分進(jìn)化算法的時(shí)間敏...
- 基于LCVAE-CNN的多任務(wù)...
- 基于多擾動(dòng)策略的中文對(duì)抗樣本生...
- 基于用戶選擇的魯棒與隱私保護(hù)聯(lián)...
- 云醫(yī)療環(huán)境下策略可更新的多權(quán)威...
- SP-CPGCN:用于塵肺病分...
- 基于多級(jí)多特征混合模型的白血病...
- 結(jié)合多尺度特征與局部采樣描述的...
- 迭代偽點(diǎn)云生成的3D目標(biāo)檢測...
- 分層蒸餾解耦網(wǎng)絡(luò)的低分辨率人臉...
- 基于運(yùn)動(dòng)分割的動(dòng)態(tài)SLAM聯(lián)合...
- 基于預(yù)測劃分卷積神經(jīng)網(wǎng)絡(luò)的全景...