邊緣計算中動態(tài)服務器部署與任務卸載聯(lián)合優(yōu)化算法
中圖分類號:TP393 文獻標志碼:A 文章編號:1001-3695(2025)06-031-1830-08
doi: 10.19734/j. issn.1001-3695.2024.11.0462
Joint optimization algorithm for dynamic server deployment and task offloading in edge computing
BaiWenchao,Lu Xianling? (SchoolofInternetofThings,JiangnanUniversity,WuxiJiangsu214122,China)
Abstract:Inmobileedgecomputing,thefixedlocations of edgeserverdeploymentscanleadtoimbalancedresourceutilizationof edgeservers,resultinginincreasedlatencyandenergyconsumptionduringthetask ofloading process.Toaddressthis issue,thispaperproposedaierarchicalreiforcementlearing-basedjointoptimizationalgorithm.Firstly,itdecomposedthe problemofedge serverplacementand task ofloading and transformedthemintoabi-Markovdecision processThen,itconstructedaglobalintellgentagentmodelforhigher-leveledgeserverdeploymentusingthedeepQ-network,andaccelerated modelconvergencebyintroducingthe K-means algorithmtoprovide high-qualitysamplesforthehigher-layer policy.Itbuilta lower-layer multi-agentmodelfortaskofloadingusingthemulti-agentproximalpolicyoptimizationalgorithm,andimproved trainingstabilitybyintroducingstatenormalizationtoreducethestatesfeaturescalediferencesinthelower-layerpolicy.Finally,itachievedtheultimateoptimizationgoaltroughalternatingoptimizationofthehigher-layerandlower-layerpolicies. Simulationresults indicatethattheproposedalgorithmcanachieveoptimal serverdeploymentandtask ofloading strategies, comparedtorandomstrategiesandotherreinforcementlearningalgorithm,and itdemonstratesgreater benefitsintermsof model training efficiency,target rewards,and load balancing metrics.
Key words:edge computing;task ofloading;edge server deployment;hierarchical reinforcement learning
0 引言
隨著5G和6G技術的高速發(fā)展,越來越多的計算密集型應用出現(xiàn)[1],如虛擬現(xiàn)實和面部識別等。(剩余20850字)
- 聯(lián)邦學習中隱私保護聚合機制綜述...
- 基于區(qū)塊鏈的車聯(lián)網(wǎng)數(shù)據(jù)共享綜述...
- 基于改進型多模態(tài)信息融合深度強...
- 基于生成對抗網(wǎng)絡與漸進式融合的...
- 基于特性分流的多模態(tài)對話情緒感...
- 面向視覺-語言模型的遞進互提示...
- 多維度交叉注意力融合的視聽分割...
- 基于多模態(tài)表征學習的自動音頻字...
- 基于改進行為克隆算法的機器人運...
- 基于混合深度強化學習的云制造云...
- 考慮故障因素的多機器人動態(tài)任務...
- 基于物理信息強化學習的無人駕駛...
- 基于改進多目標鯨魚優(yōu)化算法的云...
- 基于ABSA與動態(tài)少樣本提示的...
- 改進自適應大鄰域搜索算法及其在...
- 基于信息素矩陣優(yōu)化蟻群算法求解...
- 融合局部-全局歷史模式與歷史知...
- 一種面向情緒壓力分布外檢測的多...
- 基于句子轉(zhuǎn)換和雙注意力機制的歸...
- 基于多層特征融合與增強的對比圖...
- 使用NGN算法改進不平衡數(shù)值數(shù)...
- 一種基于終端策略的近似漣漪擴散...
- 融合混合提示與位置感知的突發(fā)事...
- 面向說話人日志的多原型驅(qū)動圖神...
- 鄰域變異的黑猩猩多峰優(yōu)化算法...
- 基于增強型差分進化算法求解廣義...
- 面向可重構(gòu)陣列的CNN多維融合...
- 一種用于機器聲音異常檢測的AR...
- 基于數(shù)據(jù)驅(qū)動的WSN故障檢測框...
- 一種面向軟件眾包的眾包工人選擇...
- 邊緣計算中動態(tài)服務器部署與任務...
- 基于自適應差分進化算法的時間敏...
- 基于LCVAE-CNN的多任務...
- 基于多擾動策略的中文對抗樣本生...
- 基于用戶選擇的魯棒與隱私保護聯(lián)...
- 云醫(yī)療環(huán)境下策略可更新的多權威...
- SP-CPGCN:用于塵肺病分...
- 基于多級多特征混合模型的白血病...
- 結(jié)合多尺度特征與局部采樣描述的...
- 迭代偽點云生成的3D目標檢測...
- 分層蒸餾解耦網(wǎng)絡的低分辨率人臉...
- 基于運動分割的動態(tài)SLAM聯(lián)合...
- 基于預測劃分卷積神經(jīng)網(wǎng)絡的全景...