基于多層特征融合與增強的對比圖聚類
Contrastive graph clustering based on multi-level feature fusion andenhancement
Li Zhiming τ1a,1b,1c,2 ,Wei Hepinglat,Zhang Guangkangla,You Dianlong ρ,a,lb,lc,2 (1.a.Schloffotionee&Ein,yoatofofareEgigfberoc,eybofor ComputerVirtalhlog&stmIntegationofHbeiProinceYashnUniersityQiangdaHbei,hina;.S search Institute ofYanshan University,Yanshan University,Shenzhen Guangdong 518o63,China)
Abstract:The majorityofexisting contrastivegraph clustering algorithmsfacethe following issues:theyignorethelow-level featuresand structural informationextracted byshalownetworkswhen generatingnoderepresentation.Thealgorithms neither fullutilizehighorderneighbornodeinformationnorintegrateconfidenceinformationwithtopologicalstructureinformationto construct positive sample pairs.Toaddress theabove issues,thispaper proposed acontrastive graph clustering algorithmbased onmulti-evelfeaturefusionandenhancement.Tealgorithmfirstlyintegratednodefeaturesextractedfromdiferentnetwork layerstoenrichthelow-levelstructural informationofodes.Itthenaggegatednodeinformationthroughthelocaltopolgical correlationsandglobalsemanticsimilaritiesbetweennodestoenhancethecontextualconstraintconsistencyofnoderepresentations.Finaly,combiningconfidenceinformationandtopologicalstructureinformation,thealgorithmconstructedmoreig quality positivesamplepairs to improvetheconsistencyof intra-clusterrepresentation.Theexperimental results showthat CGCMFFEhas excelent performance on four widelyused clustering evaluation metrics.Theoretical analysis and experimental studyunderscoretherucialroleoflow-levelodefeatures,hig-orderneighbornodeinformation,confidence,andtopological structure information in the CGCMFFE algorithm,providing evidence for its superiority.
Key words:multi-level feature fusion;contrastive graph clustering;unsupervised learning
0 引言
深度圖聚類是一種利用深度學習將圖中節(jié)點數(shù)據(jù)映射到低維稠密向量空間,并以無監(jiān)督的方式將節(jié)點表示劃分為若干個不相交簇的技術(shù)[1]。(剩余14750字)
- 聯(lián)邦學習中隱私保護聚合機制綜述...
- 基于區(qū)塊鏈的車聯(lián)網(wǎng)數(shù)據(jù)共享綜述...
- 基于改進型多模態(tài)信息融合深度強...
- 基于生成對抗網(wǎng)絡與漸進式融合的...
- 基于特性分流的多模態(tài)對話情緒感...
- 面向視覺-語言模型的遞進互提示...
- 多維度交叉注意力融合的視聽分割...
- 基于多模態(tài)表征學習的自動音頻字...
- 基于改進行為克隆算法的機器人運...
- 基于混合深度強化學習的云制造云...
- 考慮故障因素的多機器人動態(tài)任務...
- 基于物理信息強化學習的無人駕駛...
- 基于改進多目標鯨魚優(yōu)化算法的云...
- 基于ABSA與動態(tài)少樣本提示的...
- 改進自適應大鄰域搜索算法及其在...
- 基于信息素矩陣優(yōu)化蟻群算法求解...
- 融合局部-全局歷史模式與歷史知...
- 一種面向情緒壓力分布外檢測的多...
- 基于句子轉(zhuǎn)換和雙注意力機制的歸...
- 基于多層特征融合與增強的對比圖...
- 使用NGN算法改進不平衡數(shù)值數(shù)...
- 一種基于終端策略的近似漣漪擴散...
- 融合混合提示與位置感知的突發(fā)事...
- 面向說話人日志的多原型驅(qū)動圖神...
- 鄰域變異的黑猩猩多峰優(yōu)化算法...
- 基于增強型差分進化算法求解廣義...
- 面向可重構(gòu)陣列的CNN多維融合...
- 一種用于機器聲音異常檢測的AR...
- 基于數(shù)據(jù)驅(qū)動的WSN故障檢測框...
- 一種面向軟件眾包的眾包工人選擇...
- 邊緣計算中動態(tài)服務器部署與任務...
- 基于自適應差分進化算法的時間敏...
- 基于LCVAE-CNN的多任務...
- 基于多擾動策略的中文對抗樣本生...
- 基于用戶選擇的魯棒與隱私保護聯(lián)...
- 云醫(yī)療環(huán)境下策略可更新的多權(quán)威...
- SP-CPGCN:用于塵肺病分...
- 基于多級多特征混合模型的白血病...
- 結(jié)合多尺度特征與局部采樣描述的...
- 迭代偽點云生成的3D目標檢測...
- 分層蒸餾解耦網(wǎng)絡的低分辨率人臉...
- 基于運動分割的動態(tài)SLAM聯(lián)合...
- 基于預測劃分卷積神經(jīng)網(wǎng)絡的全景...