基于物理信息強化學習的無人駕駛車輛跟馳控制模型
中圖分類號:TP181 文獻標志碼:A 文章編號:1001-3695(2025)06-012-1691-07
doi:10.19734/j. issn.1001-3695.2024.11.0473
Physics-informed reinforcement learning-based car-following control model for autonomous vehicles
Zhou Ruixiangla,Yang Dalb,Zhu Liling2+ (1.a.ScholeicoptiouUit China;2.School ofBusiness,SichuanNormal University,Chengdu 61o1oo,China)
Abstract:Car-folowing controlisafundamental technique forautonomous driving.Inrecentyears,einforcementlearning hasbeenwidelyadopted incar-folowing tasks,enabling models toexhibit strong learning andimitationcapabilities.However, reinforcement learning-based modelsface chalenges such aspoor interpretabilityandunstableoutputs,which pose potential safetyrisks.Toaddresstheseissues,thispaper proposedaphysics-informedreinforcementlearningcar-following model.The model incorporatedvehicledynamics,defined continuous stateandaction spaces,andintegrated threeclasicalcar-following models withreinforcementlearning to enhancestabilityand interpretability.Itconstructedasimulationenvironmentbyusing PythonadtheSUMOtraficsimulatortotrainthePIRL-CFmodel.Comparativeexperiments wereconductedagainsttraditional car-folowing modelsandmainstreamdeepreinforcementlearning models(DDPGandTD3).Experimentalresultsshowthat the PIRL-CF model improves the proportion of comfort zones by 8% compared to deep reinforcement learning models. Additionaly,itincreasestheminimumtime-to-colisionbyO.3sandtheaverageheadwaydistancebyO.21scomparedtotraditional models.Theseresultsdemonstratethat thePIRL-CFmodelachieves abalanceofsafety,comfort,anddri-ving effciency in car-following tasks,providing an efective solution for autonomous driving decision-making.
Key Words:vehicle folowing;reinforcement learning;depth deterministic strategy gradient;physical information
0 引言
近年來無人駕駛技術(shù)受到了世界范圍內(nèi)的廣泛關(guān)注,其中車輛跟馳控制是無人駕駛的基礎(chǔ)控制技術(shù)之一。(剩余18010字)
- 聯(lián)邦學習中隱私保護聚合機制綜述...
- 基于區(qū)塊鏈的車聯(lián)網(wǎng)數(shù)據(jù)共享綜述...
- 基于改進型多模態(tài)信息融合深度強...
- 基于生成對抗網(wǎng)絡(luò)與漸進式融合的...
- 基于特性分流的多模態(tài)對話情緒感...
- 面向視覺-語言模型的遞進互提示...
- 多維度交叉注意力融合的視聽分割...
- 基于多模態(tài)表征學習的自動音頻字...
- 基于改進行為克隆算法的機器人運...
- 基于混合深度強化學習的云制造云...
- 考慮故障因素的多機器人動態(tài)任務...
- 基于物理信息強化學習的無人駕駛...
- 基于改進多目標鯨魚優(yōu)化算法的云...
- 基于ABSA與動態(tài)少樣本提示的...
- 改進自適應大鄰域搜索算法及其在...
- 基于信息素矩陣優(yōu)化蟻群算法求解...
- 融合局部-全局歷史模式與歷史知...
- 一種面向情緒壓力分布外檢測的多...
- 基于句子轉(zhuǎn)換和雙注意力機制的歸...
- 基于多層特征融合與增強的對比圖...
- 使用NGN算法改進不平衡數(shù)值數(shù)...
- 一種基于終端策略的近似漣漪擴散...
- 融合混合提示與位置感知的突發(fā)事...
- 面向說話人日志的多原型驅(qū)動圖神...
- 鄰域變異的黑猩猩多峰優(yōu)化算法...
- 基于增強型差分進化算法求解廣義...
- 面向可重構(gòu)陣列的CNN多維融合...
- 一種用于機器聲音異常檢測的AR...
- 基于數(shù)據(jù)驅(qū)動的WSN故障檢測框...
- 一種面向軟件眾包的眾包工人選擇...
- 邊緣計算中動態(tài)服務器部署與任務...
- 基于自適應差分進化算法的時間敏...
- 基于LCVAE-CNN的多任務...
- 基于多擾動策略的中文對抗樣本生...
- 基于用戶選擇的魯棒與隱私保護聯(lián)...
- 云醫(yī)療環(huán)境下策略可更新的多權(quán)威...
- SP-CPGCN:用于塵肺病分...
- 基于多級多特征混合模型的白血病...
- 結(jié)合多尺度特征與局部采樣描述的...
- 迭代偽點云生成的3D目標檢測...
- 分層蒸餾解耦網(wǎng)絡(luò)的低分辨率人臉...
- 基于運動分割的動態(tài)SLAM聯(lián)合...
- 基于預測劃分卷積神經(jīng)網(wǎng)絡(luò)的全景...