目錄
-
-
思辨課堂教學(xué)在高中數(shù)學(xué)中的實(shí)踐研究
摘 要:思辨教學(xué)方法的主要目的是提高學(xué)生的思考和辨別能力,高中數(shù)學(xué)教師需要學(xué)會(huì)靈活運(yùn)用思辨課堂教學(xué)法,并將其與其他方法相結(jié)合,以提高教學(xué)效果.本文以北京師范大學(xué)版《數(shù)學(xué)必修4》第一章第8節(jié)“函數(shù)y=Asin(ωx+φ)的圖象”為例.以“思辨...
-
-
基于孫維剛教學(xué)思想的高中數(shù)學(xué)教學(xué)的有效性研究
摘 要:新時(shí)期對(duì)學(xué)生科學(xué)精神和創(chuàng)新意識(shí)提出了更高的要求,教師要積極探究科學(xué)的教育方法以適應(yīng)新的教育形式的發(fā)展.孫維剛老師作為素質(zhì)教育的杰出代表,他的教學(xué)思想及教學(xué)方法依然對(duì)新時(shí)期的教學(xué)改革提供寶貴的經(jīng)驗(yàn),本篇文章對(duì)孫老師在課堂教學(xué)中培養(yǎng)學(xué)生...
-
促進(jìn)高中數(shù)學(xué)課堂生成的教學(xué)策略研究
摘 要:隨著新課標(biāo)的頒布,數(shù)學(xué)課堂出現(xiàn)很大轉(zhuǎn)變,在課堂中突出學(xué)生的知識(shí)主體作用成為主導(dǎo)意識(shí).尤其是生成型教學(xué)方法的形成,為教學(xué)課堂帶來了豐富的活動(dòng),有效激發(fā)了學(xué)生自主思維的興趣,課堂形象煥然一新.教師通過各種輔學(xué)工具,給孩子提供適宜環(huán)境、加...
-
-
學(xué)理、明理、說理,在法則教學(xué)中滲透“素養(yǎng)”目標(biāo)
摘 要:在計(jì)算法則教學(xué)過程中,教師應(yīng)該以學(xué)生的已有知識(shí)儲(chǔ)備為基礎(chǔ),幫助學(xué)生內(nèi)化法則,明確算理的規(guī)定由來,建立法則之間的通道,滿足學(xué)生在規(guī)則學(xué)習(xí)過程中的明理需求.達(dá)到這一目標(biāo),需要?jiǎng)?chuàng)設(shè)合理的教學(xué)情境,設(shè)計(jì)任務(wù)目的明確的問題.本文以有理數(shù)乘法法...
-
概念生成階段要重視運(yùn)用啟發(fā)式教學(xué)方法
摘 要:為了避免概念新授課時(shí)出現(xiàn)“一個(gè)定義、三項(xiàng)注意、大量練習(xí)”的教學(xué)現(xiàn)象,在概念引入時(shí)要精心選編問題情境,隨后“去情境化”得出概念的本質(zhì)特征,再引導(dǎo)學(xué)生概括出數(shù)學(xué)新對(duì)象的定義,整個(gè)過程都要貫徹啟發(fā)式教學(xué)方法.這既是“新課標(biāo)”的要求,也是切...
-
重視反例教學(xué) 提升教學(xué)品質(zhì)
摘 要:反例教學(xué)在促進(jìn)知識(shí)深化,提升學(xué)生糾錯(cuò)、防錯(cuò)能力,培養(yǎng)思維嚴(yán)謹(jǐn)性、深刻性等方面發(fā)揮著不可替代的作用.在教學(xué)中,教師要從教學(xué)實(shí)際出發(fā),重視整理歸納反例教學(xué)資源,引導(dǎo)學(xué)生通過對(duì)比、辨析、糾錯(cuò)等活動(dòng)更好地理解知識(shí),應(yīng)用知識(shí),使學(xué)生的發(fā)散性、...
-
-
初中數(shù)學(xué)有效教學(xué)策略探析
摘 要:在倡導(dǎo)和推行新課程改革的背景下,初中數(shù)學(xué)有效教學(xué)的策略研究為開展數(shù)學(xué)課堂教學(xué),提升數(shù)學(xué)教學(xué)效率提供了理論基礎(chǔ),是如今教育教學(xué)改革深入發(fā)展的一大趨勢,也是廣大教師著重探討的重要課題.本篇內(nèi)容立足于有效數(shù)學(xué)教學(xué)課堂的基礎(chǔ),結(jié)合數(shù)學(xué)課堂教...
-
-
銜之有備 接之有方
摘 要:從幼兒園到小學(xué)的有效銜接是家長、教師們共同關(guān)注的重點(diǎn)問題之一,也是教育主管部門一直在強(qiáng)調(diào),并通過各種政策、規(guī)章努力實(shí)施的工作.2022年的義務(wù)教育階段新版數(shù)學(xué)課程標(biāo)準(zhǔn)就再次提出了這一點(diǎn).本文針對(duì)目前幼小銜接中存在的問題,幼小數(shù)學(xué)的區(qū)...
-
-
小學(xué)數(shù)學(xué)教學(xué)中“美”與“趣”的融合策略
摘 要:小學(xué)數(shù)學(xué)是一門獨(dú)特的科學(xué),可以激發(fā)學(xué)生思維,教師可以充分利用數(shù)學(xué)中蘊(yùn)含的美學(xué)因素為學(xué)生創(chuàng)造有趣的課堂,使學(xué)生感受到數(shù)學(xué)學(xué)習(xí)的獨(dú)特之處.但小學(xué)數(shù)學(xué)教學(xué)中教學(xué)單一、趣味性不足的問題日益突出,不利于培養(yǎng)學(xué)生的數(shù)學(xué)思維與數(shù)學(xué)素養(yǎng).因此,本文...
教學(xué)研究
-
-
基于嘗試教學(xué)理論的高中數(shù)學(xué)教學(xué)模式探究
摘 要:隨著教學(xué)體制的不斷改革與完善,新課改的理念應(yīng)運(yùn)而生,高中階段的數(shù)學(xué)教學(xué)逐漸演化成更加豐富、更加多元的教學(xué)模式.在制定教學(xué)方案、實(shí)施課堂教學(xué)的過程中,教師需要掌握學(xué)生的實(shí)際情況,以激發(fā)學(xué)生學(xué)習(xí)欲望、培養(yǎng)學(xué)生學(xué)習(xí)思維方式、提高學(xué)生學(xué)習(xí)技...
-
-
初中數(shù)學(xué)輔導(dǎo)的有效性策略研究
摘 要:隨著數(shù)學(xué)知識(shí)的深入學(xué)習(xí),數(shù)學(xué)的學(xué)習(xí)難度也在逐漸上升.初中階段是學(xué)生數(shù)學(xué)成績出現(xiàn)分化的重要時(shí)期.很多學(xué)生無法做到將課堂上所學(xué)的數(shù)學(xué)知識(shí)進(jìn)行有效的消化,所以就需要教師在課后服務(wù)階段對(duì)學(xué)生進(jìn)行輔導(dǎo),從而將所學(xué)的數(shù)學(xué)知識(shí)進(jìn)行鞏固.“1+X”...
-
-
分類討論思想在數(shù)學(xué)解題中的應(yīng)用
摘 要:分類討論思想作為數(shù)學(xué)中的一種重要的思想,在數(shù)學(xué)解題中有著廣泛而深刻的應(yīng)用.學(xué)生們?nèi)绾巫匀绲剡\(yùn)用這一思想開啟解決問題的大門,這是學(xué)生們學(xué)習(xí)的難點(diǎn),也是教師在教學(xué)中需要重點(diǎn)指導(dǎo)的地方.下面以二次函數(shù)中的圖形存在性問題為例,具體講解如何運(yùn)...
-
-
因“材”施教謀全局,順“勢”而為促發(fā)展
摘 要:概念教學(xué)是發(fā)展學(xué)生數(shù)學(xué)思維,培養(yǎng)其數(shù)學(xué)核心素養(yǎng)的重要載體.但在日常教學(xué)中,理想與現(xiàn)實(shí)存在諸多差距.“平方根”作為初中數(shù)學(xué)概念教學(xué)典型課例,以其為引,從把握學(xué)科知識(shí)、掌握教學(xué)知識(shí)、運(yùn)用技術(shù)知識(shí)角度闡述緊扣課標(biāo)教材,遵循學(xué)生的認(rèn)知規(guī)律,...
-
-
讓問題留白式呈現(xiàn),培養(yǎng)學(xué)生概括能力
摘 要:人教版八年級(jí)教材在分式方程學(xué)習(xí)的最后,安排了一類“特殊”的分式方程的應(yīng)用問題,這類應(yīng)用問題中除了要設(shè)出的未知數(shù)x之外,還含有其它的字母表示一些已知數(shù).這類問題在探究規(guī)律或其它學(xué)科(如物理)的公式探究與運(yùn)用中也比較常見,將問題與變式“...
-
-
深度學(xué)習(xí)視域下的初中數(shù)學(xué)活動(dòng)課設(shè)計(jì)
摘 要:深度學(xué)習(xí)是培養(yǎng)數(shù)學(xué)核心素養(yǎng)的有效途徑.而初中數(shù)學(xué)活動(dòng)課中如何進(jìn)行深度學(xué)習(xí)的研究較少.通過研究實(shí)踐,筆者總結(jié)出初中數(shù)學(xué)活動(dòng)課可以通過遵循學(xué)生認(rèn)知、理解數(shù)學(xué)本質(zhì)、發(fā)展應(yīng)用意識(shí)和促進(jìn)思維發(fā)展這四個(gè)方面來進(jìn)行設(shè)計(jì),進(jìn)而促進(jìn)學(xué)生的深度學(xué)習(xí). ...
-
-
讓學(xué)生在解題學(xué)習(xí)中學(xué)會(huì)概括
摘 要:微專題教學(xué)是中學(xué)數(shù)學(xué)復(fù)習(xí)階段一種新的復(fù)習(xí)課型,得到了很多教師的研究和實(shí)踐.微專題教學(xué)主題聚焦于一類問題或一個(gè)基本圖形,一題多變、多題歸一,有助于學(xué)生對(duì)一類問題的歸類與識(shí)別,提升學(xué)生思維品質(zhì),也有利于“就題論道”. 關(guān)鍵詞:微專題教學(xué)...
-
-
構(gòu)建利用數(shù)學(xué)輔助工具的問題解決模型
摘 要:小學(xué)生抽象思維能力薄弱,在解題過程中常常面臨著諸多困境.鑒于此,可充分借助線段圖這一輔助工具,將抽象問題具體化、直觀化,幫助學(xué)生讀懂題意,明確其中蘊(yùn)含的數(shù)量關(guān)系,厘清解題思路等.本論文就以此作為研究的新視角,結(jié)合線段圖在小學(xué)數(shù)學(xué)解題...
案例分析
-
-
類比中獲新知 應(yīng)用中顯能力
摘 要:類比法是培養(yǎng)學(xué)生合情推理能力的重要數(shù)學(xué)思想方法,契合了義務(wù)教育數(shù)學(xué)新課程標(biāo)準(zhǔn)的要求,將其應(yīng)用到初中數(shù)學(xué)解題教學(xué)中,可促使學(xué)生在類比中通過歸納、知識(shí)遷移、發(fā)現(xiàn)規(guī)律、挖掘題目中隱藏的條件,最終打開解題思維,順利找到解題的“突破口”.本文...
-
-
在數(shù)學(xué)教學(xué)中活用化歸思想三段論
摘 要:化歸思想是數(shù)學(xué)學(xué)習(xí)過程中很重要的思想,教師要善于運(yùn)用自主探索,動(dòng)手實(shí)踐,合作交流,從而掌握化歸思想的內(nèi)涵.化歸的關(guān)鍵在于在學(xué)生頭腦中構(gòu)建知識(shí)框架,讓學(xué)生對(duì)已學(xué)的知識(shí)融會(huì)貫通,從而化未知為已知,化繁為簡,知易求難. 關(guān)鍵詞:自主探索;...
-
-
初中數(shù)學(xué)解題教學(xué)中逆向思維的應(yīng)用研究
摘 要:逆向思維是初中數(shù)學(xué)學(xué)習(xí)必備的數(shù)學(xué)思維,不僅能幫助學(xué)生提升解題效率,還能以逆向思維帶動(dòng)抽象思維、聯(lián)想思維、分析思維等高階思維的提升,幫助學(xué)生提升思維品質(zhì),從而實(shí)現(xiàn)高質(zhì)量、全方位的發(fā)展.本文以初中數(shù)學(xué)解題教學(xué)中逆向思維的應(yīng)用研究為研究主...
-
“生命視域”下數(shù)學(xué)課堂教學(xué)范式探尋
摘 要:生命化的課堂要求教師要用“生命”的理念關(guān)照課堂,用“生命”的理念刷新教學(xué).鏈接生活、關(guān)照學(xué)情、指向成長,是建構(gòu)生命數(shù)學(xué)課堂的有效方略.在生命化課堂上,學(xué)生的數(shù)學(xué)學(xué)習(xí)應(yīng)當(dāng)是始于“歡樂”,終于“智慧”的.通過生命課堂的建構(gòu)、創(chuàng)造,讓學(xué)生...
-
培養(yǎng)小學(xué)生數(shù)學(xué)量感的策略研究
摘 要:《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2022年版)》新增“量感”這一學(xué)生核心素養(yǎng)的表現(xiàn),但目前數(shù)學(xué)量感教學(xué)中還存在很多不足,針對(duì)不足現(xiàn)象展開分析,提出發(fā)展小學(xué)生量感的策略. 關(guān)鍵詞:小學(xué)生;數(shù)學(xué);量感;策略研究 在新頒布的《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)...
數(shù)學(xué)學(xué)習(xí)
-
-
例說求曲線軌跡方程的若干方法
摘 要:求曲線的軌跡方程是高考的一個(gè)重要考點(diǎn),其解題關(guān)鍵就是分析動(dòng)點(diǎn)的變化規(guī)律,然后用坐標(biāo)的形式表示出來,并建立相關(guān)的方程.本文從不同角度出發(fā),探究求曲線軌跡方程的方法:直譯法、定義法、幾何法、代入法、參數(shù)法、交軌法,并通過相應(yīng)的例題加以說...
-
-
函數(shù)兩個(gè)零點(diǎn)證明題的構(gòu)造解法探究
摘 要:如果問題的待證結(jié)論是關(guān)于某個(gè)函數(shù)兩個(gè)零點(diǎn)的不等關(guān)系式,需要通過研究一個(gè)新函數(shù)的單調(diào)性,并利用不等式的性質(zhì)進(jìn)行變形轉(zhuǎn)化解決,其解題核心是構(gòu)造新函數(shù).本文通過不同角度,探究了函數(shù)兩個(gè)零點(diǎn)證明題的7種構(gòu)造解法:利用極值前構(gòu)造函數(shù);利用對(duì)稱...
-
-
談數(shù)學(xué)建模在教學(xué)中的創(chuàng)新應(yīng)用
摘 要:數(shù)學(xué)往往來源于生活,又高于生活,并反饋應(yīng)用于生活.借助現(xiàn)實(shí)生活中的相關(guān)創(chuàng)新應(yīng)用問題,構(gòu)建與應(yīng)用問題相吻合的數(shù)學(xué)模型,進(jìn)而利用相關(guān)的數(shù)學(xué)知識(shí)來分析與處理,學(xué)以致用,創(chuàng)新應(yīng)用,合理引領(lǐng)與指導(dǎo)高中數(shù)學(xué)教育. 關(guān)鍵詞:數(shù)學(xué)建模;函數(shù);數(shù)列;...
-
-
用類比遷移法求解數(shù)學(xué)問題的思考
摘 要:本文通過對(duì)平面幾何問題、平面解析幾何問題的類比引出新的猜想,進(jìn)一步對(duì)解題方法進(jìn)行猜測,得到如何解決現(xiàn)在的問題的啟示和方法,以期切實(shí)提高學(xué)生的解題能力. 關(guān)鍵詞:類比法;數(shù)學(xué)問題;解題能力 所謂類比,是指通過兩個(gè)對(duì)象類似之處的比較而由...
-
-
看似尋常最奇崛 解法紛呈顯素養(yǎng)
摘 要:對(duì)一道中考?jí)狠S題的解法進(jìn)行探究,試題以新定義的自位似對(duì)稱變換為背景,考查概念理解、尺規(guī)作圖、推理證明,綜合性強(qiáng),區(qū)分度好.通過剖析試題特色,總結(jié)解題策略,以期提高學(xué)生解題能力,促進(jìn)學(xué)生核心素養(yǎng)的落地生根. 關(guān)鍵詞:自位似對(duì)稱變換;解...
解題探索
-
-
高等數(shù)學(xué)教學(xué)中基于Matlab的建模思想的探究
摘 要:隨著科學(xué)技術(shù)的發(fā)展,數(shù)學(xué)軟件與高等數(shù)學(xué)教學(xué)適當(dāng)融合是一種重要的教學(xué)手段,在數(shù)學(xué)建模能力的培養(yǎng)過程中顯得尤為重要.本文基于Matlab軟件的強(qiáng)大功能,探討了在高等數(shù)學(xué)教學(xué)中數(shù)學(xué)建模與教學(xué)工具M(jìn)atlab的有機(jī)融合,舉例分析了Matla...
-
-
基于GeoGebra的數(shù)學(xué)可視化教學(xué)研究
摘 要:以“總體分布估計(jì)”一課為教學(xué)案例,創(chuàng)設(shè)統(tǒng)計(jì)數(shù)學(xué)實(shí)驗(yàn)任務(wù);依托GeoGebra平臺(tái),通過構(gòu)建動(dòng)態(tài)統(tǒng)計(jì)模型,將探究問題可視化呈現(xiàn),促進(jìn)學(xué)生合作學(xué)習(xí)及動(dòng)手能力,發(fā)展了學(xué)生數(shù)據(jù)分析、數(shù)學(xué)建模及邏輯推理等數(shù)學(xué)核心素養(yǎng). 關(guān)鍵詞:教學(xué)案例;Ge...
CAI專題
-
-
一題一課:高三復(fù)習(xí)課的教學(xué)設(shè)計(jì)與思考
摘 要:通過一道??荚囶}的圖形繪制以及圖形分析,在一課一題的教學(xué)活動(dòng)中探究解題,以繪制圖形為基礎(chǔ),思維導(dǎo)圖分析為主線,建構(gòu)學(xué)生解決問題的基本路徑,在復(fù)習(xí)過程中將知識(shí)點(diǎn)進(jìn)行串并,達(dá)到以點(diǎn)帶面,以試題解答串聯(lián)知識(shí)點(diǎn)的復(fù)習(xí),培養(yǎng)學(xué)生的數(shù)學(xué)學(xué)科關(guān)鍵...
-
-
高三數(shù)學(xué)復(fù)習(xí)中培養(yǎng)學(xué)生分析問題能力的途徑探析
摘 要:高三復(fù)習(xí),一般分為三個(gè)階段,即熟知的一輪、二輪、三輪復(fù)習(xí),其中,二輪復(fù)習(xí)是學(xué)生思維提升、能力發(fā)展的關(guān)鍵時(shí)期,正確的方法、思維、能力等各方面的引領(lǐng),對(duì)于學(xué)生以后的發(fā)展至關(guān)重要.高中教師在教學(xué)實(shí)踐中,應(yīng)認(rèn)真分析學(xué)生的學(xué)情,適應(yīng)新課標(biāo)、新...
-
-
知識(shí)技能全面覆蓋,能力素養(yǎng)層次分明
摘 要:高考平面解析幾何試題的命題特點(diǎn)與規(guī)律總結(jié),是后繼數(shù)學(xué)教學(xué)與復(fù)習(xí)備考的重點(diǎn)與依據(jù).結(jié)合2022年高考數(shù)學(xué)平面解析幾何試題的命題特征,從多個(gè)層面加以展開與歸納,總結(jié)命題導(dǎo)向,引領(lǐng)復(fù)習(xí)備考. 關(guān)鍵詞:平面解析幾何;高考命題;素養(yǎng) 2022...
-
-
高考全國卷中二項(xiàng)式定理常見題型分析
摘 要:二項(xiàng)式定理是高考的高頻考點(diǎn),常以選擇題或填空題的形式考查,主要考點(diǎn)為求展開式特定項(xiàng)系數(shù)和常數(shù)項(xiàng).該類問題相對(duì)來說比較獨(dú)立,解法靈活.本文主要通過分析近八年高考全國理科卷,明確二項(xiàng)式定理的考查題型、類型、核心考點(diǎn)以及分值,進(jìn)一步為學(xué)生...
-
-
活用解題策略方入思維勝境
摘 要:中考數(shù)學(xué)壓軸題具備綜合性、新穎性,同時(shí)也具備選拔的功能,在教學(xué)中具備極強(qiáng)的導(dǎo)向價(jià)值.作為一名優(yōu)秀的數(shù)學(xué)教師,在日常教學(xué)中應(yīng)善于從中挖掘教育價(jià)值,充分發(fā)揮壓軸題的引導(dǎo)價(jià)值,優(yōu)化初中數(shù)學(xué)壓軸題解題教學(xué),不斷提升學(xué)生的解題能力.本論文就以...
復(fù)習(xí)考試
相關(guān)雜志