基于改進(jìn)YOLOv5s的松科球果目標(biāo)檢測(cè)與定位
關(guān)鍵詞:松科球果;目標(biāo)檢測(cè);目標(biāo)定位;YOLOv5s算法;雙目深度相機(jī) 中圖分類號(hào):S791.24;TP391.4;TP18 文獻(xiàn)標(biāo)識(shí)碼:A DOI:10.7525/j.issn.1006-8023.2025.04.015
Abstract:Traditional methods for harvesting pinecone speciesface challenges such as low eficiency,high risks,and uncontrollable costs.To addressreal-time recognition and localization in automated pinecone harvesting,we proposed animproved YOLOv5s-7.0(youonlylookonce)objectdetectionmodeland constructabinoculardepthcamera-based detectionand localization network.To improvetheaccuracyand eficiencyof object detection,theYOLOv5s model was improved byembeddng partial convolutions (PConv)into the neck module's multi-branch stacked structure to enhance sparsefeature processng capability,improve robustness,and reduce feature redundancy incomplex scenarios of pinecones.Aditionally,the simple atention mechanism (SimAM)was integrated at deep backbone layers and backboneneck connections tooptimizethe model’sfeatureextractionabilityand information transmision eficiencyincomplex backgrounds without significantparameter increases.To meet therequirements of efficient detectionand localization,a target detection and real-time localizationcode was developedusing binocular vision principlesand the improved YOLOv5s model,and a pinecone detection and localization system was constructed through depth matching.Based on theconstructed datasetof Pinus sylvestris var.mongolicacones fromthe Greater Khingan Mountains and Pinus koraiensis cones from the Lesser Khingan Mountains,the improved YOLOv5s model achieved a precision of 96.8% ,a recall of 94.0% , and an average precision (AP) of 96. 3% in target detection tasks. The proposed pinecone detection and localization system demonstrated mean absolute errors of ( ).644cm ,0 ?620cm ,and 0.740 cm along the x ,y-,and Z -axes, respectively. Under front,side,and backlighting conditions,the localization success rate reached 93.3% ,while in lowlight environments,it maintained a success rate of 83.3% . Other performance indicators,including field of view,meet the operational requirements for pinecone harvesting.The proposed pinecone detection and localization system provides a reliable solution for real-time target detection and localization problems in mechanized pinecone harvesting.
Keywords:Pinecone;target detection;target localization;YOLOv5s algorithm;binocular depth camera
0 引言
松科球果作為一種重要的林業(yè)資源,因其在食品、醫(yī)藥和化工領(lǐng)域的廣泛應(yīng)用而備受關(guān)注[1]。(剩余16909字)
- 大興安嶺寒溫帶針葉林群落特征及...
- 解除休眠水曲柳種子的超干貯藏研...
- 快速升溫和升溫間歇期興安落葉松...
- 不同徑級(jí)紅松生長(zhǎng)對(duì)氣候變化響應(yīng)...
- 基于硼化學(xué)串聯(lián)糖結(jié)晶體系分離高...
- 二氧化硅包裹銳鈦礦型二氧化鈦處...
- 聚乙二醇處理對(duì)杞柳軟化效果的影...
- 不同厚度中密度纖維板的孔隙分形...
- 刀狀黑黃檀木材解剖結(jié)構(gòu)及其密度...
- 基于改進(jìn)YOLOv8模型的木材...
- 基于改進(jìn)型YOLOv8的木材缺...
- 基于改進(jìn)YOLOv8的膠合板單...
- 基于聲發(fā)射信號(hào)多重分形特征的櫸...
- 不同改性處理對(duì)橡膠木抗菌性能影...
- 基于改進(jìn)YOLOv5s的松科球...
- 中密度纖維板板壞密度與含水率對(duì)...
- 基于離散元法的生物質(zhì)熱解螺旋抄...
- 基于非支配遺傳算法-Ⅱ的放大電...
- 深紋核桃側(cè)枝搖振采摘振動(dòng)參數(shù)...
- 基于視覺(jué)檢測(cè)的膠合板表面缺陷修...