基于改進(jìn)型YOLOv8的木材缺陷檢測及分類
關(guān)鍵詞:木材缺陷;目標(biāo)檢測;深度學(xué)習(xí);YOLOv8;特征提取;多尺度融合;算法優(yōu)化;智能識別 中圖分類號:S781.1 文獻(xiàn)標(biāo)識碼:A DOI:10.7525/j.issn.1006-8023.2025.04.011
Abstract:Aimingatthebotteneck problemof insufficientadaptabilityof traditionaldefectdetection methodsinautomated wood processng industry,research onintellgentdetectiontechnologybasedondeep learning iscarriedout,and adatasetcovering multi-species woodcharacteristicsand typicaldefecttypes is proposed.Applyingobjectdetectiontechnology to defect detection,using dilation wise residual(DWR)module to optimize C2f module,and proposing task aligned dynamic detection head (TADDH)and feature focusing spread pyramid network (FSPN) to impove YOLOv8 algorithm(DFT-YOLO).The experimental results showed that a significant improvement in accuracy,reaching 96.8%, which was 7.9 higher than the original model.On the averageaccuracyof the keyevaluation indicators mAP50 and mAP50-95,the impoved model reached 93. 8% and 75.2% ,respectively,increasing by 6.8% and 17.5% ,respectively.While improving the detection accuracy,the number of parameters of the model had decreased by approximately 1/6 ( 16.2% ).The impoved model can provide a lightweight detection method for wood defects.
KeyWords:Wood defect;target detection;deep learning;YOLOv8;feature extraction;multi-scalefeature integration; computational optimization;intelligent recognition
0引言
中國作為全球木材消費(fèi)的重要市場,面臨環(huán)保政策日益嚴(yán)格和公眾環(huán)保意識提升的雙重挑戰(zhàn)。(剩余19737字)
- 大興安嶺寒溫帶針葉林群落特征及...
- 解除休眠水曲柳種子的超干貯藏研...
- 快速升溫和升溫間歇期興安落葉松...
- 不同徑級紅松生長對氣候變化響應(yīng)...
- 基于硼化學(xué)串聯(lián)糖結(jié)晶體系分離高...
- 二氧化硅包裹銳鈦礦型二氧化鈦處...
- 聚乙二醇處理對杞柳軟化效果的影...
- 不同厚度中密度纖維板的孔隙分形...
- 刀狀黑黃檀木材解剖結(jié)構(gòu)及其密度...
- 基于改進(jìn)YOLOv8模型的木材...
- 基于改進(jìn)型YOLOv8的木材缺...
- 基于改進(jìn)YOLOv8的膠合板單...
- 基于聲發(fā)射信號多重分形特征的櫸...
- 不同改性處理對橡膠木抗菌性能影...
- 基于改進(jìn)YOLOv5s的松科球...
- 中密度纖維板板壞密度與含水率對...
- 基于離散元法的生物質(zhì)熱解螺旋抄...
- 基于非支配遺傳算法-Ⅱ的放大電...
- 深紋核桃側(cè)枝搖振采摘振動參數(shù)...
- 基于視覺檢測的膠合板表面缺陷修...