基于深度特征融合的惡意軟件檢測方法研究
Research onmalwaredetectionmethodbasedon deep feature fusion
ZHANG Xiaoyu1,2,ZHANGZhenyou1,2 (1.CollegeofArtificial Intellgence,NorthChinaUniversityofScienceandTechnology,TangshanO6321o,China; 2.HebeiKeyLboatrfustrialteligentrcetiorthiaUvesityfienedcholoagsa
Abstract:The features used in the current malwaredetection modelsaresimpleandthe detectionaccuracyof the models islow,andthemodelsfailtoconvergestablyduetoimbalancedcategories,soadeepfeaturefusionbasedmalwaredetection modelisproposed.Theobtainedrawtraficcapturefilesarecleanedtoremoveabnormaldatapackets.Anetworktraffcbasicinformationextractionlibraryisusedtosegmentnetworktraffcinthefomofsesions,obtainrelevantinformationaboutthetraffic,andetractterequiredstatisticalfeatures.ubsequently,tetatisticalfeaturesareeeplyprocssdbyfullyotedlay ersandautoencoders,ffectivelyeliminatingtheinfluenceofnoiseandgeneratingmorerobustfeatures.Next,aone-dimensional convolutional neuralnetwork (1D-CNN)andalong short-termmemory (LSTM)network areusedtoextractspatiotemporalfeatures jointlyandobtaincomprehensivelatentinformation,whicheliminatesunstablemodelconvergencewhilesignificantlyimproving the accuracyof modeldetection.The model was trainedandtestedonamixed datasetof StratosphereIPSandUSTC-TFC2016, and compared with five other models. The model achieves an accuracy of 99.48% and an F1 -score of 97.82% for binary classification tasks,and achieves an accuracy of 93.16% and an F1 -score of 92.69% for multi-classification tasks.The test results show thatthe model in this paper can effectively eliminate the unstable convergence caused by classimbalance.
Keywords:networktraffc;deeplearning;statisticalfeature;temporal feature;spatialfeature;classimbalance;malware classification
0 引言
在數(shù)字化時代,惡意軟件成為網(wǎng)絡(luò)安全領(lǐng)域的一大威脅,對個人用戶、企業(yè)機構(gòu)以及整個網(wǎng)絡(luò)生態(tài)系統(tǒng)都構(gòu)成了潛在的危脅。(剩余11628字)
-
-
- 現(xiàn)代電子技術(shù)
- 2025年13期
- 基于FNM-Net的輕量級遙感...
- 基于YOLOv8n的輕量化道路...
- 面向復雜場景目標提取的顏色增強...
- 基于改進U-Net的細胞核圖像...
- 基于深度學習和Retinex理...
- 基于注意力機制和ACT網(wǎng)絡(luò)的人...
- 基于改進RT-DETR的小目標...
- 基于級聯(lián)式逆殘差網(wǎng)絡(luò)的游戲圖像...
- 基于顯著性特征的多視角動作圖像...
- 新能源接人下移動通信傳輸網(wǎng)絡(luò)控...
- 基于FMCW毫米波雷達遠于2m...
- 基于樣本重要性的分布式深度學習...
- 基于RDMMIMOOFDM雷達...
- T-BOI:一種融合時間和行為...
- 基于改進的灰狼算法優(yōu)化BP神經(jīng)...
- 基于改進的ResNet網(wǎng)絡(luò)和特...
- 基于深度特征融合的惡意軟件檢測...
- 融合雙通道特征信息的醫(yī)療短文本...
- 聲源定位系統(tǒng)的廣義二次互相關(guān)算...
- 基于GAIL方法的魚類個體運動...
- 基于圖像知識增強的中文多模態(tài)反...
- 基于ZYNQ-7000和AD9...
- 基于自適應采樣的全息圖像壓縮感...
- 基于電感電容的鋰離子電池組雙層...
- 基于獨立線長預測信息的低功耗驅(qū)...
- 基于YOLOv8的多功能導盲系...