基于改進(jìn)的灰狼算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的人侵檢測(cè)方法
Intrusion detection method based on improved grey wolf optimization algorithm optimized BPneural network
PENG Qingyuan1, WANG Xiaofeng,2,TANG Ao1,HUA Yingying1,HE Fei',LIU Jianping1,2 (1.SchoolofComputerScienceandEngineering,NorthMinzu University,Yinchuan75oo21,China; 2.KeyLabelsassi
Abstract:Network securityissuesare becoming moreand more prominent in today'sworld.Theintrusiondetection technologyhasbeenrapidlydevelopedasanimportantpartinthefieldofnetworksecurity.Atpresent,BPneuralnetworkis widelyusedinintrusiondetection.However,thweightseletingofthetaditioalBnuraletworkisiaccurate,tsleaing eficiencyislowanditispronetofalingintolocalminima.Fortheaboveshortcomings,anintrusiondetectionmethodbasedon theimproved greywolfoptimization(IGWO)algorithmoptimizedBPneuralnetwork isproposed.TheIGWOalgorithmextends thesearcrangeof thewolf pack bychanging the linearcontrolparametersandadingtheinversecotangentinertia weight strategyinthegraywolfpositionupdateformulatoavoidfalingintothelocaloptimalsolution.Theimprovedalgorithmisused tooptimizetheinitialweightsandthresholdvaluesoftheBPneuralnetwork,andtheoptimizedBPneuralnetworkisappliedto intrusiondetection.TheexperimentalresultsshowthattheIGWOalgorithmhasbeterstability,optimizing eficiencyand optimizingaccuracy,andtheimprovedintrusiondetectionmethodisnotprone tofaling intolocalminima,hasstrong generalization ability,and has high prediction accuracy and reliability.
Keywords:nonlinear control parameter;inertia weight;GWOalgorithm;BPneural network;intrusiondetection;network security
0 引言
隨著網(wǎng)絡(luò)技術(shù)的發(fā)展,計(jì)算機(jī)網(wǎng)絡(luò)的安全性受到越來(lái)越多的關(guān)注。(剩余10024字)
-
-
- 現(xiàn)代電子技術(shù)
- 2025年13期
- 基于FNM-Net的輕量級(jí)遙感...
- 基于YOLOv8n的輕量化道路...
- 面向復(fù)雜場(chǎng)景目標(biāo)提取的顏色增強(qiáng)...
- 基于改進(jìn)U-Net的細(xì)胞核圖像...
- 基于深度學(xué)習(xí)和Retinex理...
- 基于注意力機(jī)制和ACT網(wǎng)絡(luò)的人...
- 基于改進(jìn)RT-DETR的小目標(biāo)...
- 基于級(jí)聯(lián)式逆殘差網(wǎng)絡(luò)的游戲圖像...
- 基于顯著性特征的多視角動(dòng)作圖像...
- 新能源接人下移動(dòng)通信傳輸網(wǎng)絡(luò)控...
- 基于FMCW毫米波雷達(dá)遠(yuǎn)于2m...
- 基于樣本重要性的分布式深度學(xué)習(xí)...
- 基于RDMMIMOOFDM雷達(dá)...
- T-BOI:一種融合時(shí)間和行為...
- 基于改進(jìn)的灰狼算法優(yōu)化BP神經(jīng)...
- 基于改進(jìn)的ResNet網(wǎng)絡(luò)和特...
- 基于深度特征融合的惡意軟件檢測(cè)...
- 融合雙通道特征信息的醫(yī)療短文本...
- 聲源定位系統(tǒng)的廣義二次互相關(guān)算...
- 基于GAIL方法的魚類個(gè)體運(yùn)動(dòng)...
- 基于圖像知識(shí)增強(qiáng)的中文多模態(tài)反...
- 基于ZYNQ-7000和AD9...
- 基于自適應(yīng)采樣的全息圖像壓縮感...
- 基于電感電容的鋰離子電池組雙層...
- 基于獨(dú)立線長(zhǎng)預(yù)測(cè)信息的低功耗驅(qū)...
- 基于YOLOv8的多功能導(dǎo)盲系...