基于FNM-Net的輕量級遙感目標(biāo)檢測算法
Lightweight remote sensing object detection algorithm based on FNM-Net
WENBin2,ZHANG Jun1,2 ,WANGJunyin2,WANGZihao2,DINGYifu (1.HubeioalbodtfadropisUst; 2.SchoolofElectricaland NewEnergy,ChinaThreeGorgesUniversity,Yichang 443oO2,China; 3.NanchuanPowerSupply Branch of StateGridChongqing ElectricPowerCompany,Chongqing 4O4o,China)
Abstract:Inviewofthe current challnges inremote sensing object detection,such as low accuracy,slow processing speedsandlargequantityof modelparameters,anFNM-Net,alightweightremotesensingobject detectionnetwork basedonan improvedYOLOv7-tinyarchitecture,isproposed.Firstly,alightweightfeatureextractionnetworkFaster-Netisintroducedto substitutetheoriginalone,soastopreventthenetwork'sexcesiveoverlapoffeaturemaps.Secondlythefocalmodulation moduleisintroducedandthespatialinformationintegrationmodule (SIM)isproposed toconstructanewpathaggregationnetwork thatmitigatesissuesoftheinformationredundancyandtheoverlookof intra-layerfeaturesduringfeaturefusion.Andthen,the multi-fine-graineddetectionheadsaredesignedtoavoidthelargescalevariationsofremotesensingobjects.Finalyapruning method utilizinga layeradaptiveamplitudepruning (LAMP)scoreisemployed to eliminateconnections withminor weights, therebyreducingparameternumberandcomputationalburdenandincreasingthedetectionspeed.Thismethodisvalidatedbythe public RSOD dataset.The results show that the proposed method achieves a 51.2% reduction in parameter number,a 55.2% (20 decrease in FLOPs,a 6.5f/s increase in detection speed,and a 2.1% improvement in mAP (mean average precision) in comparisonwiththoseof thebaseline model.Additionaly,itsgeneralizabilityisconfirmedontheNWPU VHR-1Odataset.
Keywords:remote sensing object detection;FNM-Net; light weight; pruning; improvedYOLOv7-tiny; SIM
0 引言
遙感圖像廣泛應(yīng)用于環(huán)境監(jiān)測、礦產(chǎn)資源勘探、交通規(guī)劃、災(zāi)害監(jiān)測與救援、國防軍事等多個領(lǐng)域。(剩余11290字)
-
-
- 現(xiàn)代電子技術(shù)
- 2025年13期
- 基于FNM-Net的輕量級遙感...
- 基于YOLOv8n的輕量化道路...
- 面向復(fù)雜場景目標(biāo)提取的顏色增強(qiáng)...
- 基于改進(jìn)U-Net的細(xì)胞核圖像...
- 基于深度學(xué)習(xí)和Retinex理...
- 基于注意力機(jī)制和ACT網(wǎng)絡(luò)的人...
- 基于改進(jìn)RT-DETR的小目標(biāo)...
- 基于級聯(lián)式逆殘差網(wǎng)絡(luò)的游戲圖像...
- 基于顯著性特征的多視角動作圖像...
- 新能源接人下移動通信傳輸網(wǎng)絡(luò)控...
- 基于FMCW毫米波雷達(dá)遠(yuǎn)于2m...
- 基于樣本重要性的分布式深度學(xué)習(xí)...
- 基于RDMMIMOOFDM雷達(dá)...
- T-BOI:一種融合時間和行為...
- 基于改進(jìn)的灰狼算法優(yōu)化BP神經(jīng)...
- 基于改進(jìn)的ResNet網(wǎng)絡(luò)和特...
- 基于深度特征融合的惡意軟件檢測...
- 融合雙通道特征信息的醫(yī)療短文本...
- 聲源定位系統(tǒng)的廣義二次互相關(guān)算...
- 基于GAIL方法的魚類個體運動...
- 基于圖像知識增強(qiáng)的中文多模態(tài)反...
- 基于ZYNQ-7000和AD9...
- 基于自適應(yīng)采樣的全息圖像壓縮感...
- 基于電感電容的鋰離子電池組雙層...
- 基于獨立線長預(yù)測信息的低功耗驅(qū)...
- 基于YOLOv8的多功能導(dǎo)盲系...