基于級聯(lián)式逆殘差網(wǎng)絡(luò)的游戲圖像多模態(tài)目標(biāo)精準(zhǔn)辨識研究
Research on game imagemultimodal objectprecise identification basedoncascadedinverseresidualnetwork
LIUJianzhi
(ShenyangLigongUniversity,Shenyang11oooo, China)
Abstract:Theobjects inthegame have complexfeaturessuch asshape,colorand texture.Inaddition,theobjects appear indiferentperspectives,scalesandpostures,allofwhichincreasethediicultyofbjectrecognition.Acascadediverse residualnetworkcanenhancethemultidimensionalfeaturesoftheobject,andcanrecognizetheobjectefectivelyeveninthe presenceofocclusion,deformation,etc.Therefore,agameimagemultimodalobjectpreciseidentificationmethod basedon cascadedinverseresidual network isproposed.Abackbonenetworkconsisting ofconvolutional layersandcascaded inverse residualmodules basedondepthwiseseparableconvolutiondesignisconstructed.Thisnetworkisused toextract thenputtd gameimage features preliminarily.Thechannelrearrngementisused toenhancetheinformation exchange among channels.The featureenancementnetworkisusedtoupsamplethefeaturemaps learnedbythebackbonenetwork.Themultimodalobject featuresareetractedincombinationwiththemulti-chanelfeaturefusion.Theobjectposition,direction,andotherinforation areoutputedbyapredictionnetwork thatcanachieveclasificationandregressontasks.Sofar,apreciseidentificationof multimodalobjects ingameimagesisachieved.Theexperimentalresultsshowthatthemethodcanachievetheidentificationof thecharacters,text,scene elements andother objects in the gameimages,with atraining lossofonlyabout O.O5andan F1 -score of 0.967. To sum up,the multimodal object recognition effect of game images is good.
Keywords:inverseresidual;;gameimage;;multimodal;channelrearrangement;SIoUlossfunction;objectidentification; convolutional layer;object location
0 引言
度不斷提高,為玩家?guī)砹烁鼮檎鎸?shí)和沉浸式的體驗(yàn),但同時(shí)也給游戲圖像目標(biāo)辨識技術(shù)提出了更高的挑戰(zhàn)。(剩余5474字)
-
-
- 現(xiàn)代電子技術(shù)
- 2025年13期
- 基于FNM-Net的輕量級遙感...
- 基于YOLOv8n的輕量化道路...
- 面向復(fù)雜場景目標(biāo)提取的顏色增強(qiáng)...
- 基于改進(jìn)U-Net的細(xì)胞核圖像...
- 基于深度學(xué)習(xí)和Retinex理...
- 基于注意力機(jī)制和ACT網(wǎng)絡(luò)的人...
- 基于改進(jìn)RT-DETR的小目標(biāo)...
- 基于級聯(lián)式逆殘差網(wǎng)絡(luò)的游戲圖像...
- 基于顯著性特征的多視角動(dòng)作圖像...
- 新能源接人下移動(dòng)通信傳輸網(wǎng)絡(luò)控...
- 基于FMCW毫米波雷達(dá)遠(yuǎn)于2m...
- 基于樣本重要性的分布式深度學(xué)習(xí)...
- 基于RDMMIMOOFDM雷達(dá)...
- T-BOI:一種融合時(shí)間和行為...
- 基于改進(jìn)的灰狼算法優(yōu)化BP神經(jīng)...
- 基于改進(jìn)的ResNet網(wǎng)絡(luò)和特...
- 基于深度特征融合的惡意軟件檢測...
- 融合雙通道特征信息的醫(yī)療短文本...
- 聲源定位系統(tǒng)的廣義二次互相關(guān)算...
- 基于GAIL方法的魚類個(gè)體運(yùn)動(dòng)...
- 基于圖像知識增強(qiáng)的中文多模態(tài)反...
- 基于ZYNQ-7000和AD9...
- 基于自適應(yīng)采樣的全息圖像壓縮感...
- 基于電感電容的鋰離子電池組雙層...
- 基于獨(dú)立線長預(yù)測信息的低功耗驅(qū)...
- 基于YOLOv8的多功能導(dǎo)盲系...