TVFEMD尋優(yōu)分解與智能算法優(yōu)化的FLN土壤 含水量預(yù)測
關(guān)鍵詞:時變?yōu)V波經(jīng)驗?zāi)B(tài)分解(TVFEMD);算法優(yōu)化;快速學習網(wǎng)(FLN);土壤含水量;預(yù)測中圖分類號:S271;TV93 文獻標識碼:A文章編號:0439-8114(2025)05-0147-08DOI:10.14088/j.cnki.issn0439-8114.2025.05.023
TVFEMD optimization decomposition and FLN-based soil moisture content prediction using intelligent algorithm optimizations
TIANYu1,CUIDong-wen2
1.YunnanInstituteofWater&HydropowerEngineeingInvestigation,DesignandResearch,Kunming 65O1,China; 2.Wenshan Zhuang and Miao Autonomous Prefecture Water Bureau,Wenshan 663Ooo,Yunnan,China)
Abstract:BasedotheobservedsoilmosturecontentdatafromlO,2,and40cmsoillyersatTanxingadPojiaostationsinYunnanProvince,a prediction model(TVFEMD-BSLO/AO/IVYA/EGO/PSO-FLN)wasconstructedbyimprovingthetime-varying filter empirical modedecomposition(TVFEMD)andfastlearning network(FLN)methods toenhancethetime-series predictionaccuracy of soil moisturecontent.Bycomparingtheperformanceofdiferentoptimzatioalgoritms,asuperiormodelingapproachasprovidedforsoilmoistureprediction.Theresultsshowed thattheTVFEMDdecompositionperformancewasprimarilyinfluencedbytwo key parameters:Bandwidth thresholdand B-splineorder.Optimizing these twparametersusing theIVYAalgorithmimproved the timeseriesdecompositionqualityand further enhanced themodel’sprediction performance.The TVFEMD-BLSO/AO/IVYA/EGO-FLN modeldemonstratedoutstandingpredictionperformanceonthetrainingset,withameanabsolutepercentageerror(MAPE)of 0.002 % \~0.077% and a coefficient of determination ( R2 )of 0.999 7\~1.000 0. The MAPE in the prediction set was 0.006%\~0.459 % , and R2 was0.996 6\~1.000 0.Compared with the TVFEMD-PSO-FLN model,the TVFEMD-BLSO/AO/IVYA/EGO-FLN model showedsignificantimprovements inbothfitingperformanceandpredictionaccuracyOptimizingFLNhyperparametersusingBLSO, AO,IVYA,ndEGOagorithmseffectivelyimprovedmodelpeformance,withtheIVYAalgorithmexhibitingthemostnotableoptimization effect.
Key Words:time-varyingfilter empirical modedecomposition(TVFEMD);algorithmoptimization;fastlearning network(FLN); soil moisture content;prediction
土壤含水量是描述土壤干濕程度,反映旱情最直接、最重要的指標之一,提高土壤含水量時間序列預(yù)測精度對于旱情預(yù)警、農(nóng)業(yè)生產(chǎn)、生態(tài)系統(tǒng)保護和水資源管理具有重要意義。(剩余10412字)
-
-
- 湖北農(nóng)業(yè)科學
- 2025年05期
- 不同遮陰度下菜用甘薯生長發(fā)育和...
- 水稻硅突變體的研究進展...
- 受旱對水稻和土壤鎘含量及鎘抗性...
- 河南省南陽市、三門峽市伏牛山系...
- 耐硒菌株Bacilluscer...
- 水稻秸稈還田配施氮肥對土壤碳氮...
- 基于大食物觀下河北省土地資源承...
- MCLP-CC模型在長垣市村莊...
- 黃河中游地區(qū)土地利用綠色轉(zhuǎn)型時...
- 基于改進蝴蝶優(yōu)化算法的土壤水動...
- LSTM和EnKF在農(nóng)業(yè)土壤降...
- 大豆花葉病毒半夏分離物外殼蛋白...
- 桑寄生種子萌發(fā)過程中的生理生化...
- 廣西積雪草內(nèi)生真菌多樣性分析...
- 烤煙K326的NtALS基因單...
- 云南省煙草漂浮育苗用水效率影響...
- 河南省信陽市出山店水庫冬季底棲...
- 早孕因子單克隆抗體對宮頸癌He...
- 負載反-對香豆酸甲酯的醛基化普...
- 龍牙草多酚提取工藝及其抗氧化活...
- 基于iTransformer與...
- 基于大數(shù)據(jù)的煙草倉庫溫濕度智能...
- TVFEMD尋優(yōu)分解與智能算法...
- 基于Stacking集成算法的...
- 基于改進YOLOv8模型的玉米...
- 蕎麥種間雜交群體基因定位解析...
- 藏公雞MC1R基因多態(tài)性與羽色...
- 江蘇省農(nóng)業(yè)科技進步貢獻率的時空...
- 基于扎根理論的農(nóng)村股份經(jīng)濟合作...
- 消費者價值觀驅(qū)動下有機農(nóng)產(chǎn)品購...
- 新疆農(nóng)村一二三產(chǎn)業(yè)融合發(fā)展評價...
- 空間公正視角下新疆縣域城鄉(xiāng)融合...
- 縣域農(nóng)業(yè)高質(zhì)量發(fā)展評價及收斂性...
- 資源環(huán)境約束下中國農(nóng)業(yè)綠色全要...
- 山西省數(shù)字鄉(xiāng)村發(fā)展水平測度...
- 科技創(chuàng)新支撐農(nóng)業(yè)強國建設(shè)的理論...
- 數(shù)字普惠金融、農(nóng)業(yè)新質(zhì)生產(chǎn)力對...
- 陜西省傳統(tǒng)村落空間格局及其影響...