多類算法融合的基坑沉降組合預(yù)測(cè)分析
中圖分類號(hào):U459 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1005-8249(2025)03-0128-06
DOI:10.19860/j.cnki.issn1005-8249.2025.03.023
Abstract:Toachieve high-precision predictionoffoundationpitsettlement,basedontheon-sitesettement monitoring
resultsof the foundation pit,thepolarsymmetricmodedecompositionalgorithmis firstusedtodecomposethesetlementdata,
obtaining several modal componentsand trend components.Then,thegrey wolf algorithmandgatedrecurrent unit neural
networkareused toconstructacombined prediction model,and thismodel isused topredictthedeformationof each modal
componentandtrendcomponent,inordertoobtainthecombined predictionvalueoffoundationpitsetlement.Theanalysis
results indicatethatcommonsetlement monitoring itemsduringfoundationpitconstructionincludesurfacesettlement,pittop
setlement,andbuildingsetlement;According tomonitoringdataanalysis,theremaining deformationspaceofthepittop setlementisrelativelythelargest,followedbybuildingsettlementandsurfacesetlement;Overall,theremainingdeforation spaceforthethree typesofsetlementanddeformationprojectsisstillrelativelyoptimistic,withonlyasmall numberof monitoring points having limitedremaining deformationspaceincertainareas;Intheprocessofdataprocessing,thepole symmetric mode decompositionalgorithmhasstrongdataprocessingability,anditsabilityissignficantlybetterthanthedata procesing efectofwaveletdenoisingand mode decompositionmethods.According toGWO-GRU prediction,therelativeerror mean of the prediction results of this model in three types of setlement projects is around 2% ,which has high prediction accuracy.Te predictionresultsshowthatthedevelopmenttrendofthethree typesofsetlementdeformationisrelatively consistent inthefuture,showingasmallrate increase trendandobviousconvergencecharacteristics.Thisindirectlyverifiesthe goodoperational efectoffoundationpitsupportmeasures.Throughresearch,itcanprovidetechnicalreferencesforsimilar projects and has certain practical significance.
Key words:excavation pit;setlement deformation;data decomposition;grey wolf algorithm;combination prediction
0 引言
近年,隨著城市化進(jìn)程的加快,基坑工程數(shù)量越來(lái)越多,基坑開挖會(huì)引發(fā)基坑周邊土體變形,基坑沉降變形屬基坑施工過程中的必測(cè)項(xiàng)目,姜偉玲等[1]、仇安兵[2]認(rèn)為開展基坑沉降變形的相關(guān)研究具有較強(qiáng)的現(xiàn)實(shí)意義。(剩余6234字)
- 鋼筋-地聚物超高性能混凝土黏結(jié)...
- 再生復(fù)合微粉混凝土高溫水冷損傷...
- 不同 Zr02 摻量改性水泥鈣...
- 基于灰色關(guān)聯(lián)分析的礦料級(jí)配骨架...
- 纖維增強(qiáng)粉煤灰混凝土耐久性研究...
- 粉煤灰特性及其對(duì)氣泡輕質(zhì)土性能...
- 高分子抗裂密實(shí)劑對(duì)混凝土軸壓力...
- 再生微粉泡沫混凝土力學(xué)性能研究...
- 地聚物固化渣土室內(nèi)水-力性質(zhì)試...
- 水庫(kù)溢洪道混凝土泄槽面板的氯鹽...
- 粉煤灰摻量對(duì)高層建筑筏板基礎(chǔ)混...
- 新型粉煤灰基防水涂料制備及性能...
- 不同摻合料對(duì)3D打印復(fù)合漿體流...
- 基于支持向量機(jī)回歸的黃土濕陷性...
- 基坑開挖影響下臨近地下管線的力...
- 軟土地區(qū)自動(dòng)伺服系統(tǒng)深基坑變形...
- 氯鹽漬土無(wú)側(cè)限抗壓強(qiáng)度及體變特...
- 降雨作用下緩傾巖質(zhì)邊坡滑移破壞...
- 堅(jiān)硬頂板沿空留巷充填體加固技術(shù)...
- 基于灰色關(guān)聯(lián)和組合賦權(quán)的橋梁剩...
- 大型滑坡的成災(zāi)機(jī)理分析及治理對(duì)...
- 考慮相鄰點(diǎn)影響的基坑沉降優(yōu)化組...
- 多類算法融合的基坑沉降組合預(yù)測(cè)...
- 基于遺傳算法的神經(jīng)網(wǎng)絡(luò)對(duì)大體積...
- 昌寧隧道豎井輔助正洞施工技術(shù)研...
- 石灰改良黃土物理力學(xué)與抗凍性能...
- 車輛荷載作用下地鐵隧道基坑變形...
- 裝配式剪力墻新型節(jié)點(diǎn)抗震性能試...
- 非均勻銹蝕對(duì)建筑鋼混組合梁承載...