基于集成機器學習的大理紅花大金元種植適宜性區(qū)劃
中圖分類號:S572;S126 文獻標識碼:A文章編號:1007-5119(2025)02-0113-08
1,1*,2,3,4,1,1,1(1.河南農(nóng)業(yè)大學資源與環(huán)境學院,鄭州450046;2.云南省煙草公司大理州公司,云南大理67100;3.浙江萬里學院信息與智能學院,浙江寧波315000;4.河南農(nóng)業(yè)大學煙草學院,鄭州450046)
Planting Suitability Zones of Honghuadajinyuan in Dali Prefecture Based on Integrated Machine Learning
WENG Qianwen1, CHEN Weiqiang1*,WANG Dexun2, CHEN Yilin3, SHI Hongzhi4, MA Yuehong1, YU Ying1,YUAN Yuke1 (1.College ofResouresandEnviroment,Henan Agrcultural University,Zhengzhou45o46,China; 2.YuanTobaccoCompany Dali PrefectureCompany,Dali7o,Yunnan,Cina;3.ColegeofInformationand IntelligenceEnginering,Zhejng Wanli University,Ningbo350oo,Zhejang,China;4.TobacoColegeofHenanAgriculturalUniversityZhengzhou4546,China)
Abstract:Theflue-cured tobaccovariety“Honghuadajinyuan”exhibitspoorecologicaladaptability.Toestablishaninteligent Zoning methodforitscultivationsuitabilityinDali tobacogrowingarea,sevenecologicalenvironmentalovaratesereselected, includingaltitde,precipiationuringteaturitypriod,eantemperatueduringteaturitypriod,drotealit, soil pH,availablepotassumcontent,andwater-solublechlorieontent.Using752surveydatastsastraiingsamplesandthe ensembleofmachine learming algorithms,weinvestigatedthecultivationsuitabilityzoningof“Honghuadajinyuan”inDali Prefecture.Resultsdemonstratedasthefolows.(1)Thesuitabilityof“Honghuadajinyuan”showsmultidimensionalnonlinear relationshipwithenvironmentalcovariates,validatingtheuseofnonlinearmachneleamingmodels.2)Theoptimalmodelswere CHAIDdecisiontresitegratedwithaggingadbostingalgorits.Inthesuitabilitycassodel,thehydrotheralcoient, soilavailablepotas,ndmatuityperdprcipiatiwereteostiialinicatos;Iteabilityvelodelatity period precipitation,meantemperatureuringthematuritypriodandaltitudewereproritzed.(3)Among1458evalatioits, 471wereclasifiedas“mostsuitable”,456as“moderatelysuitable”and531as“unsuitable”.Suitablecultivationareas were concentratedinJianchanYunlong,Eryan,Dalirefecture,Weishan,Miduandanjiancountiesaswellasteastend western partsofBinchuanandthesouthwesternregionofYongping. (4)Validationusingsensory evaluationdata from48tobacco leaf samples confirmed the alignment of zoning results with actual quality.These findings provide a scientific basis for optimizing “Honghuadajinyuan” cultivation Zoning in Dali Prefecture.
Keywords: machine learning; Honghuadajinyuan; planting suitability assessment; Dali prefecture
紅花大金元品種煙葉清香型風格突出,香氣質(zhì)好,香氣量足,深受卷煙企業(yè)的青睞[1]。(剩余17257字)
- 田間成熟度對煙葉機械采收效果的...
- 叢枝菌根真菌種類和接種方式對烤...
- 福建烤煙不同生育期雹災風險評價...
- 煙草健康株與根結(jié)線蟲發(fā)病株根際...
- 煙草靶斑病拮抗菌Y18鑒定及發(fā)...
- 長沙煙區(qū)煙草赤星病病害調(diào)查與病...
- 柱前衍生HPLC法分析煙葉水溶...
- 加熱預處理對加熱卷煙薄片裂解及...
- 干燥方式對煙花有機酸含量的影響...
- 光強對雪茄葉片光合及葉綠素熒光...
- 煙草SRS基因家族鑒定與非生物...
- 基于遷移學習的MobileVi...
- 煙苗整齊度評估分析模型研究...
- 基于集成機器學習的大理紅花大金...
- 煙葉惠農(nóng)政策實施成效分析及對策...