機理-數(shù)據融合的造斜率智能預測方法
中圖分類號:TE243文獻標識碼:ADOI:10.12473/CPM.202404089
Bai Jiashuai,Zhong Yinming,Wang Liwei,etal.Mechanism-data fused intelligent prediction of build-up rate[J].China Petroleum Machinery,2025,53(5):1-9.
Mechanism-Data Fused Intelligent Prediction of Build-Up Rate
Bai Jiashuai1Zhong Yinming1Wang LiweiLi Zhen2Song Xianzhi2Liu Zihao2Zhu Zhaopeng3 (1.OiProductionTechnology ResearchInstitute(Supervision Company),PetroChina XinjiangOileldompany;2.Collgeof PetroleumEngineering,China UniversityofPetroleu(Beijing);3.ColegeofMechanicalandTransportationEngineering,Chna U niversity of Petroleum (Beijing))
Abstract:The accurate prediction ofbuild-up rate is fundamental for wellbore trajectory control,and it directlyaffects thedrilling effciencyof directional wells.However,due to the complexityof downhole mechanical behaviors,traditional prediction methods cannot accurately predictthe build-uprate for their limitations.This paper presents a mechanical-intellgent model fused build-up rate prediction method.Specifically,the mechanical model isused tocalculate the bit side force,bit rotation angleand ultimate build-uprate as the main control factors,and the automated machine learning framework is combined with other parameters for purpose of fiting prediction,therebyavoiding theempirical coeficient inversion intraditional method.In this way,theadvantagesof accurate macroscopic pattern description of the mechanical model and strong nonlinear fiting abilityof the inteligent modelare fully exerted.The data from 14 wels inthe Mahu block of Xinjiang Oilfield were used for training and test.The results show that,with mechanical parameters fused,the model achieves the maximum error,root mean square error and average absolute error of build-up rate reduced by 17% , 12% and 8% ,respectively,with the root mean square error and average absolute error less than 1.00° per 30m ,indicating that this method can effectively improve theaccuracyof build-uprate prediction,and is more effectively performed especially in hole sections with sharp changes in build-up rate.This study provides a new idea for the acurate prediction of build-up rate, and also a technical support for the precise control of wellbore trajectory.
Keywords:intellgent driling;automated machine learning;build-up rate prediction;mechanism-data fused; mechanical parameter
0引言
造斜率的精確預測是實現(xiàn)井眼軌跡高質量調控的基礎,但由于造斜率的影響因素極為復雜,至今尚未完全厘清底部鉆具組合(BHA)在復雜地層中的造斜機理,所以精確預測仍具挑戰(zhàn)性。(剩余13253字)
- 機理-數(shù)據融合的造斜率智能預測...
- 基于Blending模型融合的...
- 基于聲波處理技術的鉆井環(huán)空動液...
- 川西深層致密砂巖水平井鉆井提速...
- “璇璣” 導向工具與底部鉆具組...
- 立輪輔助鉆進單元試驗與數(shù)值模擬...
- 裸眼沖探PDC鉆頭設計與鉆進仿...
- 東海西湖區(qū)塊深部地層復合沖擊破...
- 基于石墨烯導熱工具的隨鉆儀器溫...
- 大環(huán)空坐封用可溶橋塞錨定結構優(yōu)...
- 基于AMESim的液力驅動無桿...
- 多級壓裂斜井段累積塑性應變數(shù)值...
- 基于EMD小波降噪的螺桿泵共振...
- 考慮耦合效應的頁巖油井筒溫壓分...
- 復合式三相旋流分離器分離性能分...
- 基于響應面法的小型井下油水分離...
- 超高壓尾管回接壓裂工藝在塔里木...
- 基于RGPSO-LightGB...