基于長(zhǎng)短期記憶(LSTM)神經(jīng)網(wǎng)絡(luò)的鋰電池極片面密度精細(xì)預(yù)測(cè)方法研究
關(guān)鍵詞:鋰電池極片;面密度測(cè)量;X射線測(cè)厚儀;大射線斑;小射線斑擬合;LSTM神經(jīng)網(wǎng)絡(luò)中圖分類(lèi)號(hào):TM912 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1003-5168(2025)08-0028-06DOI:10.19968/j.cnki.hnkj.1003-5168.2025.08.005
Abstract: [Purposes] The areal density of lithium battery pole piece coating is very important to the capacity,performance and safety of the battery.Especially in the high-speed production line,the measurement accuracy of the coating surface density willdirectly affect the consistency and stability of the battery.However,despite their high resolution,small spot raythickness gauges are expensive and slow to acquire data, making it difficult to meet the needs of large-scale production.Therefore,a fine prediction method of lithium batery pole coating areal density based on Long Short-Term Memory (LSTM) neural network was proposed.[Methods] The LSTM model is trained by the large ray spot measurement data, and the time series characteristics and local variation laws of the areal density data are captured to fit the areal density distribution with small spot resolution,so as to reduce the equipment cost and time consumption under the premise of ensuring the measurement accuracy.[Findings] The experimental results show that the model is applicable to a variety of substrates and samples with defects,especially the fitting effct of the thining area is significantly improved.The model successully achieves the fiting accuracy of the average correlation coeficient of O.999 6,and has a high fitting ability.[Conclusions] This method provides a new idea for the on-line measurement of the coating surface density of lithium battery pole pieces,and has the application potential of achieving both high precision and low cost in highspeed intelligent production lines,and provides effective technical support for production line quality control.
Keywords: lithium battery electrode; areal density measurement; X-ray thickness gauge; large ray spot; small spot fitting;LSTM neural network
0 引言
極片涂布是鋰電池制造過(guò)程中的重要工序,涂布質(zhì)量會(huì)對(duì)鋰電池的容量、一致性和安全性產(chǎn)生重要影響。(剩余4557字)
- 新技術(shù)造出超靈敏耐用氨氣傳感器...
- 新型放大器讓數(shù)據(jù)傳輸速度提高十...
- 科學(xué)家首次在原子尺度上拍攝催化...
- 單芯片皮秒級(jí)中紅外激光器問(wèn)世...
- 可編程芯片首次用光訓(xùn)練神經(jīng)網(wǎng)絡(luò)...
- 一類(lèi)新型混沌系統(tǒng)的動(dòng)力學(xué)分析及...
- 基于經(jīng)濟(jì)負(fù)荷率的變壓器容量計(jì)算...
- 一起配網(wǎng)線路開(kāi)關(guān)動(dòng)作異常事件分...
- 面向多源異構(gòu)的鐵路數(shù)據(jù)匯聚平臺(tái)...
- 基于長(zhǎng)短期記憶(LSTM)神經(jīng)...
- 基于改進(jìn)二維Otsu算法的車(chē)道...
- 基于YOLO目標(biāo)檢測(cè)的煙草配送...
- 激光點(diǎn)陣圖像特征點(diǎn)提取算法研究...
- 掘進(jìn)機(jī)截割頭智能控制系統(tǒng)及其關(guān)...
- 某型號(hào)燃油系統(tǒng)自適應(yīng)壓力供油技...
- 主動(dòng)支護(hù)體系效用性研究...
- 裝配式地下糧倉(cāng)鋼板-混凝土組合...
- 不同開(kāi)挖方法對(duì)鐵路瓦斯隧道通風(fēng)...
- 大跨度鋼桁拱橋吊索塔架施工技術(shù)...
- 新型陽(yáng)離子MOFs復(fù)合膜對(duì)高氯...
- 電站鍋爐堵閥表面裂紋分析及壽命...
- 基于負(fù)荷預(yù)測(cè)的污水處理廠能耗優(yōu)...
- 河南省城市韌性水平評(píng)價(jià)及時(shí)空分...
- 基于PLUS模型的耕地資源時(shí)空...
- 延安市耕地保護(hù)分區(qū)研究...
- 龍山縣石羔街道土地質(zhì)量地球化學(xué)...
- 影視解說(shuō)類(lèi)二創(chuàng)短視頻適用合理使...
- 知識(shí)產(chǎn)權(quán)助力構(gòu)建“雙循環(huán)”新發(fā)...
- 專(zhuān)利視角下南通市集成電路產(chǎn)業(yè)發(fā)...
- 專(zhuān)利視角下全球反鐵電技術(shù)發(fā)展態(tài)...
- 數(shù)智技術(shù)賦能鄉(xiāng)村治理:邏輯、困...
- 標(biāo)準(zhǔn)化驅(qū)動(dòng)螺桿空壓機(jī)產(chǎn)業(yè)高質(zhì)量...
- 基于EVA價(jià)值評(píng)估模型的乳制品...
- 中部六省R&D經(jīng)費(fèi)投入...