基于集成學(xué)習(xí)的二次協(xié)同數(shù)據(jù)預(yù)測(cè)及優(yōu)化方法
關(guān)鍵詞:Fancyimpute庫(kù);數(shù)據(jù)插補(bǔ);集成學(xué)習(xí);BaggingRegressor模型;二次模型;協(xié)同預(yù)測(cè)模型中圖分類號(hào):TP391.4 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):2096-4706(2025)07-0029-12
Abstract:The commonly used air quality prediction model has poor prediction efect on unknown conditions,and theactualmeteorologicalconditions haveasignificant impactontheconcentrationofairpollutants.Inorder toreduce the errorcausedbymeteorologicalconditionstothe model predictionof polutionconcentration,itisofgreat significance to obtain amodel with good prediction acuracy.Therefore,this paper proposes aquadraticcollaborative data prediction and optimization method basedon Ensemble Learning.Firstly,it combines the measured data with primary predicted data,and usestheFancyimpute libraryfordata interpolation for misingand deviating from the normal distribution data.Secondly,the BaggingRegressr model inEnsemble Learning is used toconstruct aquadratic model,adtheinfluence of meteorological conditions onpollutantconcentration isanalyzed fromthewhole tothe individual.Thevoting mechanism is usedtosynthesize allthe pedictionresults,andtheensemblepredictionresultsareobtained.Finally,acollborativedatapredictionmodelis constructed,andtelocationrelationshipndinddirectionfactorsareicludedforomprehensiveprediction.Theexprimetal results showthat themethodcanefectivelyimprovethepredictionaccuracyofthedataandthecolaborativepredictionmodel improves the prediction accuracy of the monitoring points.
Keywords:Fancyimpute library;data interpolation;Ensemble Learning; BaggingRegresor model;quadratic model; collaborative prediction model
0 引言
綠色環(huán)保理念日益深入人心,人類社會(huì)建設(shè)始終秉持可持續(xù)發(fā)展觀念。(剩余12526字)
-
-
- 現(xiàn)代信息科技
- 2025年07期
- 基于SwinTransform...
- 基于全生命周期的基站天線碳足跡...
- 基于時(shí)域插值的小脈寬信號(hào)高精度...
- 直流UPS電池管理系統(tǒng)設(shè)計(jì)...
- 一種ARM平臺(tái)Linux系統(tǒng)下...
- 基于增益標(biāo)定的ToF相機(jī)運(yùn)動(dòng)模...
- 基于集成學(xué)習(xí)的二次協(xié)同數(shù)據(jù)預(yù)測(cè)...
- 基于XGBoost的肥胖水平綜...
- 基于PSO算法優(yōu)化BP神經(jīng)網(wǎng)的...
- 基于改進(jìn)YOL0v8+Deep...
- 基于改進(jìn)YOL0v8n的輕量化...
- 基于客流及周邊環(huán)境特征的軌交站...
- 復(fù)雜場(chǎng)景下基于改進(jìn)的Y0L0v...
- 基于LangChain與Dee...
- 基于神經(jīng)網(wǎng)絡(luò)自適應(yīng)濾波器的中醫(yī)...
- 基于改進(jìn)YOL0v8s的肺結(jié)節(jié)...
- 基于K-means的動(dòng)態(tài)聚類垃...
- 基于SpringBoot+Vu...
- 基于約束型TD3的動(dòng)態(tài)探索噪聲...
- 基于微信小程序的滄州大運(yùn)河文化...
- 基于非平衡數(shù)據(jù)的深度再分片算法...
- 基于醫(yī)院系統(tǒng)與微信小程序?qū)拥?..
- 基于Python的建筑物結(jié)構(gòu)設(shè)...
- 基于情感計(jì)算的消費(fèi)體驗(yàn)數(shù)字化表...
- 基于改進(jìn)CBR算法特征權(quán)重分配...
- 企業(yè)數(shù)字化經(jīng)營(yíng)管理平臺(tái)的研究與...
- 基于FLAC3D的煤巖體礦壓危...
- 基于Chinese-BERT和...
- 基于微信小程序的專業(yè)分流系統(tǒng)開(kāi)...
- 廣州市地表熱環(huán)境空間格局及其驅(qū)...
- 基于聯(lián)盟鏈和CP-ABE的學(xué)生...
- 基于CiteSpace的國(guó)內(nèi)數(shù)...
- 基于改進(jìn)多尺度卷積網(wǎng)絡(luò)的軸承故...
- 基于WinForm的車載數(shù)據(jù)記...
- 基于多源時(shí)空數(shù)據(jù)的人群移動(dòng)可信...