基于梯度提升回歸樹(shù)的三江源地區(qū)植被指數(shù)的預(yù)測(cè)方法研究
中圖分類號(hào):S19 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1007-0435(2025)05-1655-14
Abstract:To reveal the spatio-temporal patternand influencing factors of vegetation changes in the Sanji angyuanregion from 2OOO to 2O23,and to forecast the possible change trend of vegetation under climate change, in this study NDVI data and climte data including temperature,precipitation,wind speed and barometric pressure from four regions within Sanjiangyuan-Dari,Mado,Yushu,and Qumalai were utilized to analyze the normalized Diference Vegetation Index at the same period. The NDVI prediction model was established by using machine learning algorithms-Gradient Boosting Regressor,AdaBoost Regressor,Random Forest,and Neural Networks.On this bisis,allmodels were fine-tuned and validated to enhance performance and reliability. Finally,an optimal model of simulation accuracy was selected to simulate vegetation change under multiple scenarios.The results showed that temperature was the most significant meteorological factor influencing NDVI, explaining up to 67.29% of the variability. The Gradient Boosting Regressor showed better performance than other models in all the study areas. This model achieved a Mean Squared Error(MSE)ranging from O.000 45 to 0.001 04 and an R2 value exceeding O.9O. It showed strong fiting ability. The Gradient Boosting Regressor proved to be highly accurate and stable in predicting NDVI, which provides a robust approach for forecasting vegetation changes and is instrumental for early warning of vegetation degradation in response to climate change. Theresearch findings provide a robust scientific basis for ecological conservation initiatives,facilitating the for mulation of strategies to alleviate the efects ofclimatechange on the vegetation within the Sanjiangyuan area.
Key words:NDVI;Machine learning;Gradient boosted regression tree;Sanjiangyuan region
在過(guò)去的幾十年中,為了有效監(jiān)測(cè)陸地植被活動(dòng)的變化,歸一化植被指數(shù)(Nomalized difference veg-etationindex,NDVI)和葉面積指數(shù)(Leafareaindex,LAI)被相繼提出[1-2]。(剩余16642字)
-
-
- 草地學(xué)報(bào)
- 2025年05期
- 增溫和施氮對(duì)無(wú)芒隱子草非根際、...
- 水分和氮磷添加對(duì)不同退化程度草...
- 不同倒伏性燕麥莖稈強(qiáng)度及其木質(zhì)...
- 石斛屬燈籠組物種葉綠體基因組特...
- 不同首蓿-糧食作物(飼草)輪作...
- 長(zhǎng)期排水降低若爾蓋高寒泥炭地土...
- 不同燕麥品種莖稈抗倒性的綜合評(píng)...
- S-誘抗素對(duì)低溫干旱復(fù)合脅迫下...
- 低鉀脅迫對(duì)飼用燕麥生長(zhǎng)和生理生...
- 皮燕麥種質(zhì)資源穗部特征與種子大...
- 短期增溫及氮沉降對(duì)青藏高原高寒...
- 藏北地區(qū)適宜種植的6種飼草品質(zhì)...
- 模擬干旱和鹽脅迫對(duì)粉黛亂子草種...
- 41份荻、南荻種質(zhì)資源的表型多...
- 不同氮磷施量對(duì)河西走廊紫花首蓿...
- 柴達(dá)木輕度鹽堿地不同燕麥品種生...
- 白三葉抗旱種質(zhì)資源篩選及抗旱評(píng)...
- 大狼毒入侵對(duì)滇西北亞高山草甸土...
- 封育對(duì)蒿類荒漠草地土壤團(tuán)聚體穩(wěn)...
- 基于MaxEnt模型的天山雪蓮...
- 減碳視角下北方農(nóng)牧交錯(cuò)帶農(nóng)業(yè)結(jié)...
- 未提取到文章標(biāo)題">未提取到文章標(biāo)題...
- 牧戶定居對(duì)牧區(qū)生活、生產(chǎn)與生態(tài)...
- 甘肅南部地區(qū)10份野生沿階草種...
- 水氮耦合處理對(duì)林下鴨茅草產(chǎn)量與...
- 焉耆霍拉山植物群落物種多樣性與...
- 基于MaxEnt與GIS的黃精...
- 踩踏干擾對(duì)農(nóng)牧交錯(cuò)帶風(fēng)景道沿線...
- 基于CNKI數(shù)據(jù)庫(kù)利用Cite...
- 草烏頭種子層積過(guò)程中內(nèi)源激素變...
- 基于梯度提升回歸樹(shù)的三江源地區(qū)...
- 貯藏溫度和芽孢桿菌添加對(duì)高丹草...
- 不同比例假藥對(duì)王草青貯發(fā)酵品質(zhì)...
- 沼渣基質(zhì)厚度對(duì)高羊茅草皮成坪及...
- 不同肥料配施對(duì)輕度鹽堿地土壤理...
- 有機(jī)肥替代部分化肥對(duì)青貯玉米產(chǎn)...