基于近紅外光譜的林內(nèi)枯葉跨林分間模型遷移的含水率檢測方法
中圖分類號:S762.2 文獻(xiàn)標(biāo)識碼:A DOI:10.7525/j.issn.1006-8023.2025.03.001
Abstract:Themoisturecontentofforestfloorliterisakeyfactorinforestfireoccurrences,nditsaccuratedetectionis crucial for fire prevention.Near-infrared spectroscopy(NIRS)can directly invert moisturecontent from spectral data, enabling rapid detectionof liter moisture content.However,spectral characteristics difer between fuel types due to variations inlightintensitydataatdiffrent wavelengths,requiringseparatedetectionmodelsforliterfrom dierenttree species to match specific light intensity-moisture content inversion relationships.Collcting and labeling spectral data across differentforeststands is time-consuming,limitingthepracticalapplicationofthespectralmethod.Toaddresthis issue,this study proposesa moisturecontent detection method for forest floor liter basedon Bi-LSTM(Bidirectional Long Short-Term Memory)transferlearning.By transfering the trained modelparameters to new models,we avoid training models from scratch,thereby improving model learning eficiencyand reducing the data required fortraining.The studydemonstrates thatthe Bi-LSTMmethodsurpases the traditional inversion approach using LSTMin termsof detection accuracy.Specifically,the mean absolute errr (MAE)for Quercus mongolicaand Larix gmelinii is reduced by
0 . 6 2 % and 0 . 8 7 % ,respectively,while the mean squared error(MSE)is reduced by 0 . 2 8 % and 0 . 7 0 % ,respectively. Moreover,the Bi-LSTM-based transfer learning approach significantly lessens the reliance on labeled NIR spectraldata. With a target domain sample size of 3OO and a source domain sample size of 1 0 0 0 ,the detection model record an MAE of 3 . 2 7 % ,an MSE of 1. 10 % ,and an of 0.918.When compared to models without source domain training,the MAE and MSE show reductions of 2. 3 6 % and 1 . 0 2 % ,respectively,and an increase in of 0.114.A comparative analysis before andafterimplementingtransferlearningreveals thathismethodologyoffersanovelstrategytodiminishthetimecostasociated withmodeling moisturecontentin spectralitterand to enhancethepracticalapplicationof spectraldetection. Keywords:Liter fall;moisture content;transfer learning;deep learning;near-infrared spectrum
0 引言
林內(nèi)可燃物作為森林火災(zāi)產(chǎn)生的必要條件之二[1],其中森林地表枯葉含水率(dead fuel forest mois-turecontent,DFFMC)作為一級引火要素是引起森林火災(zāi)的重要因素[2]。(剩余16370字)
- 基于近紅外光譜的林內(nèi)枯葉跨林分...
- 基于圖神經(jīng)網(wǎng)絡(luò)的林分空間結(jié)構(gòu)優(yōu)...
- 外源有機(jī)碳輸入對林地土壤有機(jī)碳...
- 小興安嶺地區(qū)水曲柳家系徑向生長...
- 東北黑土區(qū)地埂間距對土壤物理性...
- 東北地區(qū)落葉松林樹種多樣性和空...
- 融合哨兵2號時序特征與連續(xù)變化...
- 珙桐及其伴生樹燈臺樹的調(diào)落物水...
- 11年生引種哈薩克斯坦樺樹適應(yīng)...
- 乙烯利調(diào)控橡膠樹膠乳產(chǎn)量和品質(zhì)...
- 基于夾點技術(shù)考慮碳排放的膠合板...
- 草莓保鮮膜的制備與性能研究...
- 基于區(qū)塊鏈平臺的中俄木材供應(yīng)鏈...
- 輻射-蒸發(fā)集成式被動冷卻木材的...
- 基于機(jī)器視覺的普洱茶餅外觀質(zhì)量...
- 基于遺傳算法的被動式木窗材下料...
- 基于高光譜圖譜融合的藍(lán)莓可溶性...
- 微波養(yǎng)護(hù)對水泥砂漿性能與微觀結(jié)...
- 凍結(jié)法施工中圍巖的凍脹應(yīng)力、凍...
- 不同因素下隧道初期支護(hù)爆破動力...
- 大興安嶺林區(qū)桿塔基礎(chǔ)病害特征及...