考慮多點(diǎn)監(jiān)測數(shù)據(jù)的混凝土壩智能預(yù)警分析方法
關(guān)鍵詞:混凝土壩;多點(diǎn)變形監(jiān)測;預(yù)警指標(biāo);K-means聚類法;ConvLSTM模型;3-Sigma原則中圖分類號:TV62 文獻(xiàn)標(biāo)志碼:Adoi:10.3969/j.issn.1000-1379.2025.07.024引用格式:,李炎隆,張野,等.考慮多點(diǎn)監(jiān)測數(shù)據(jù)的混凝土壩智能預(yù)警分析方法[J].人民黃河,2025,47(7):150-155.
Intelligent Early Warning Analysis Method for Concrete Dams Considering Multi-Point Monitoring Data
ZHONG Wen1,LI Yanlong1, ZHANG Ye1, ZHOU Tao2, KANG Xinyu1,YANG Tao3, LI Kangping4 (1.StateKeyLboratoryofWaterEgeringEolodEnviontinAidreaXi'nUivesityfToloXi'na; 2.Huanghe HydropowerDevelopmentCo.,Ltd.,,Xining 810o,China;3.ChinaYangtzePowerCo.,Ltd.,Yibin 644612,China; 4.Power China Northwest Engineering Corporation Limited,Xi’an 71OO65,China)
Abstract:Inodertohancetheaccacyofarlywaringincocretedmsafetymonitoring,isstudypropedanintellgentearlyainganalysismetdbasedonulti-poitmitoringdataimingtoovercoetesuseptibilityoftraditioalsingle-poitmetodstoo structuralinteferec.FirstlyK-eanslusterngmethodasusedtoartiomoitoringontsihsiilaeforationpatesn ConvLSTMmodelwasemployed toextractthespatial-temporalfeaturesoftedformationsequenesfromeachclusterandmakepredictions. Byanalyzingtheresidualsequencesanddeterminingtheearlywarning treshldbasedonthe3-Sigmapriciple,single-pointearlywaing results weregenerated.Finall,teearlywaringresultsfromallusterswereitegratedtoensurethatanearlywaingwastriggdonly whenallmoitorgpoitswitinaustereibitaomalssiultaneoslyattesaetie.Experimentalresultsshowatteproposd methodreducesthefalsealamsandmiseddetectioscausedbyextealdisturbancesinsingle-pointearlywaingmetodsbyintegatig multi-point information,thereby improving the reliabilityand stabilityof the early warning system.
Keywords:concretedam;multi-ointdeforationmonitoring;arlywaingindicators;K-meansclustering method;onSTMmodel;3 Sigma principle
0 引言
大壩作為重要的水利設(shè)施,其安全性直接關(guān)系到人民生命財(cái)產(chǎn)和生態(tài)環(huán)境的安全[1-2]。(剩余7194字)
- 耦合地理探測器和機(jī)器學(xué)習(xí)模型的...
- 基于熵指數(shù)法的黃河龍羊峽一積石...
- 基于3種算法的海南州泥石流易發(fā)...
- 地震作用下混凝土面板堆石壩三維...
- 地震-滑坡涌浪疊加下高拱壩動力...
- 基于邏輯回歸模型的黃河上游段滑...
- 黃河上游干流庫壩群段多災(zāi)種大數(shù)...
- 黃河上游干流庫壩群段重大自然災(zāi)...
- 基于SMOTE策略的數(shù)據(jù)不完整...
- 基于先驗(yàn)知識的甘肅省積石山震后...
- 基于耦合數(shù)值模型的降雨誘發(fā)滑坡...
- 基于SBAS-InSAR的黃河...
- 基于典型小概率法-LSTM的大...
- 黃河上游多災(zāi)種多源預(yù)警數(shù)據(jù)庫管...
- 面向?yàn)?zāi)害損失評估的黃河流域自然...
- 基于Word2Vec模型的泥石...
- 基于多源信息融合的黃河上游多災(zāi)...
- 水庫漫壩的潰決過程與數(shù)學(xué)表達(dá)...
- 基于集成學(xué)習(xí)和考慮滑坡負(fù)樣本的...
- 基于復(fù)雜網(wǎng)絡(luò)與數(shù)值模擬的暴雨-...
- 基于多維數(shù)據(jù)轉(zhuǎn)換的混凝土壩異常...
- 基于深度自編碼器的混凝土壩變形...
- 基于深度學(xué)習(xí)模型的混凝土壩變形...
- 考慮多點(diǎn)監(jiān)測數(shù)據(jù)的混凝土壩智能...
- 基于CORDEX數(shù)據(jù)的黃河上游...
- 基于后向散射特性的SAR遙感水...