基于改進DCGAN的棉葉螨為害圖像數(shù)據(jù)增強方法
中圖分類號:TP391.4 文獻標識碼:A 文章編號: 1000-4440(2025)05-0916-1
Abstract:Toaddressthe insufficientand imbalancedsample sizes of cottonleaf mitedamage images at different severity levels,reducedatacollectioncosts,andenhancethequalityanddiversityofimagesgeneratedbygenerativeadversarialnetworks,thisstudyproposedanimprovedDCGAN-baseddataaugmentationmethodforcoton leaf mitedamageimages.Basedon theoriginalmodel,ategorylabelswereintroducedtoeableargetedgenerationofimagesfordiferentdamagelevels,ectively resolvingtheissueofclassimbalance.Thetraditional directconnectionstructurewasreplacedwitharesidualstructuretoenhance the model’sabilty to leam complex mapping relationships,avoid gradient vanishing problems,and improvethequalityof generatedimages.Aditionally,theconvolutional blockatentionmodule(CBAM)wasembedded intheconvolutionallayers to strengthenthe model’s capacity to extract key featuresof cottonleafmitedamageimages,further enhancingthequality anddiversityofgenerated images.Lastly,theWasserstein distancewith gradient penaltywas employed as the loss function,avoiding the problem of mode collapse and enhancing thetraining stability ofthe model. The improved DCGAN
modeloutperformedtheoriginalmodelintemsof trainingstabilityandimagequality.Itsgeneratedimagesachievedhigherinceptionscore(,.1)rheticptiodisace(F,5.12),elieptionsane(K,6)dsuallarityindex measure(SSM,O.82)thanthosegeneratedbyotherclassicdataaugmentationmodelsWhentrainingtheDenseNet121 model with the dataset generated by the improved DCGAN model,the average clasification accuracy reached 88.02% ,which washighrthanthatofDenseNet-121modelstrainedwithdatasetsgeneratedbytraditionalaugmentationmethodsandothermodels.Thisstudy provides technical support for intelligent monitoring of agricultural pests and diseases.
Key words:cotton leaf mite;damage degree;deepconvolutional generative adversarial network (DCGAN);image data augmentation
新疆作為中國最大的優(yōu)質(zhì)棉生產(chǎn)基地,棉花產(chǎn)量占全國總產(chǎn)量的 90% 以上,其生產(chǎn)穩(wěn)定性直接關(guān)系到國家棉花戰(zhàn)略安全與區(qū)域經(jīng)濟發(fā)展[1]。(剩余14219字)
-
-
- 江蘇農(nóng)業(yè)學報
- 2025年05期
- 小麥 γ 醇溶蛋白基因Tagl...
- 早打頂對棉花集中成熟的影響機制...
- 基于轉(zhuǎn)錄組解析玉米苗期根系對非...
- 馬鈴薯無糖組織培養(yǎng)的條件優(yōu)化及...
- 水稻干尖線蟲海藻糖6-磷酸合成...
- 捕食螨防治對柑橘全爪螨及柑橘園...
- 微量元素肥料對水稻噻呋酰胺吸收...
- 基于遙感數(shù)據(jù)與作物模型結(jié)合的重...
- 基于改進的LSN-YOLOv8...
- 基于改進DCGAN的棉葉螨為害...
- 基于深度學習結(jié)合高光譜技術(shù)的大...
- 兔出血癥病毒 RHDV1 和 ...
- 黃瓜種質(zhì)資源果實品質(zhì)的綜合評價...
- 基于BSA-seq技術(shù)定位調(diào)控...
- 不同砧木沃柑果實發(fā)育過程中類黃...
- 天山郁金香種子解除休眠過程中生...
- 普安古茶樹種質(zhì)資源茶葉生化成分...
- 茶樹CsTLRs基因密碼子偏好...
- 明膠-納米粒子復合膜的制備及其...
- 甘薯抗病基因及其功能的研究進展...
- 新城疫的流行、檢測及綜合預防和...