基于改進(jìn)的LSN-YOLOv8模型和無(wú)人機(jī)遙感圖像的水稻稻曲病檢測(cè)方法
圖分類號(hào):S435.115 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào): 1000-4440(2025)05-0905-11
Abstract:Toaddress thechallenges ofcomplex backgrounds,smallesion targets,and the similaritybetween lesion targetsand backgroundfeatures inrice falsesmut imagescollcted byunmannedaerial vehicles(UAVs),we proposed the LSN-YOLOv8detection model.Themodel was basedon theYOLOv8 framework,andthe largeselective kernel network (LSKNet)was incorporated into the backbone network.Bydynamicallyadjusting thereceptive field range,the model enhanceditsabilitytoextractfeaturesofsmalltargets.Aditionally,acoordinateatention mechanism(CA)modulewas inte
grated into the backbone network to combine the spatial location information of lesionswith channel attention, thereby enhancingthe model's focusonkeyregionswhile reducing background interference.The detection process was visualized and analyzed using the gradient-weighted class activation mapping(Grad-CAM)technique,thereby
providingintuitive explanationsfor the model’sdecision-making.To verifythe model’s performance,ricefalse smut images captured by UAVsat diffrent disease stages andundervariousbackgroundconditionswereused toconstructarice false smutdataset.Thisdatasetwasutilizedfor modeltrainingand testing.Theexperimentalresultsindicatedthattheprecision, recall,and mean average precision at an intersection over union threshold of 0.50( mAP50 )of the LSN-YOLOv8 model proposed in this study were 94.8% , 87.3% ,and 92.3% ,respectively. These indices were all higher than those of classic object detection models such as YOLOv5,YOLOv7,YOLOv8 and Faster R-CNN.The visualization analysis results using Grad-CAM technology indicated thatthe LSN-YOLOv8 model wascapableof moreaccurately focusing onthediseased regions in the images.TheLSN-YOLOv8 model proposed inthis studycan provide technical supportforthemonitoring of rice false smut,disease control and prevention,and the identification of rice disease resistance.
KeyWords:ricefalsesmut;disease identification;unmannedaerial vehicle;YOLOv8model;largeselective ker-nel network(LSKNet);coordinate attention mechanism(CA)
水稻是全球最重要的糧食作物之一[1],其產(chǎn)量與質(zhì)量的提升是水稻生產(chǎn)的核心目標(biāo)。(剩余13689字)
-
-
- 江蘇農(nóng)業(yè)學(xué)報(bào)
- 2025年05期
- 小麥 γ 醇溶蛋白基因Tagl...
- 早打頂對(duì)棉花集中成熟的影響機(jī)制...
- 基于轉(zhuǎn)錄組解析玉米苗期根系對(duì)非...
- 馬鈴薯無(wú)糖組織培養(yǎng)的條件優(yōu)化及...
- 水稻干尖線蟲(chóng)海藻糖6-磷酸合成...
- 捕食螨防治對(duì)柑橘全爪螨及柑橘園...
- 微量元素肥料對(duì)水稻噻呋酰胺吸收...
- 基于遙感數(shù)據(jù)與作物模型結(jié)合的重...
- 基于改進(jìn)的LSN-YOLOv8...
- 基于改進(jìn)DCGAN的棉葉螨為害...
- 基于深度學(xué)習(xí)結(jié)合高光譜技術(shù)的大...
- 兔出血癥病毒 RHDV1 和 ...
- 黃瓜種質(zhì)資源果實(shí)品質(zhì)的綜合評(píng)價(jià)...
- 基于BSA-seq技術(shù)定位調(diào)控...
- 不同砧木沃柑果實(shí)發(fā)育過(guò)程中類黃...
- 天山郁金香種子解除休眠過(guò)程中生...
- 普安古茶樹(shù)種質(zhì)資源茶葉生化成分...
- 茶樹(shù)CsTLRs基因密碼子偏好...
- 明膠-納米粒子復(fù)合膜的制備及其...
- 甘薯抗病基因及其功能的研究進(jìn)展...
- 新城疫的流行、檢測(cè)及綜合預(yù)防和...