基于雙向數(shù)據(jù)流分析與圖抽象嵌入的漏洞檢測(cè)方法
關(guān)鍵詞:深度學(xué)習(xí);漏洞檢測(cè);數(shù)據(jù)流分析;圖神經(jīng)網(wǎng)絡(luò);網(wǎng)絡(luò)安全
中圖分類號(hào):TP319 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1001-3695(2025)07-034-2176-08
doi:10.19734/j. issn.1001-3695.2024.10.0436
Abstract:Ascyberatacksandcybercrimesbecome increasinglysevere,theaccuracyandcomprehensivenessofsoftware vulnerabilitydetection faces significant challenges.To addressissuessuch as the dificultyofcapturing complex semanticsof interproceduralVulnerabilies,theincompleteanalysisofdataflowinformation,andthechallengesinextractingvulnerability paternfeatures,thispaperintroducedabidirectionaldataflowanalysis vulnerabilitydetectionmethodbasedonLLVMIRand Bi-GGNN—BiG-BiD(Bi-GGNNbasedonbidirectionalDFA).Firstly,it generatedLLVMIRbycompiling sourcecode with LLVM,andconstructedanICFG(interproceduralcontrolflowgaph)toincorporateinterproceduralvulnerabilitysemantics.In addition,this paper proposeda novelICFG abstract embedding method,called DLAE (DFA line-level abstract embedding), combiningabstractdataflowwithLLVMIRline-levelvulnerabilityfeatureembeddngtoaccuratelyrepresenpotentialvulnerabilitypatersinhecode.Finally,ittrainedBi-GGNNtodynamicallsimulatereachingdefinitionanalysisandlivevariable analysis withintheICFG,enableddynamic propagationandupdatingof abstractdataflows.ExperimentalresultsontheBigVul and Reveal public datasets show that BiG-BiD achieves a recall rate of 73.7% ,outperforming existing static analysis tools and deep learning-based vulnerability detection models by 5%~38% . Additionally,this method successfully detects 23 CVE vulnerabilitiesacrossfouropen-source projects,,thathaveneverseenbefore,,1Oof the vulnerabilitiesremainunpatched,demonstrating the effctivenessand generalization of the proposed method on vulnerability detection tasks.
KeyWords:deep learning;vulnerability detection;data flow analysis;GNN;cyber security
0 引言
近年來,高級(jí)持續(xù)性威脅(APT)攻擊頻發(fā)",網(wǎng)絡(luò)空間安全已然成為國(guó)家安全不可或缺的核心部分,更是推動(dòng)新時(shí)代經(jīng)濟(jì)高質(zhì)量發(fā)展的戰(zhàn)略基石。(剩余19121字)
-
-
- 計(jì)算機(jī)應(yīng)用研究
- 2025年07期
- 多模態(tài)行人重識(shí)別研究綜述...
- 語(yǔ)義通信在邊緣算力網(wǎng)絡(luò)中的應(yīng)用...
- 基于同態(tài)加密和零知識(shí)證明的區(qū)塊...
- HyperledgerFabr...
- PMoE:在P-tuning中...
- 基于大語(yǔ)言模型的多任務(wù)生成式重...
- 基于圖文對(duì)比融合的圖像人物情感...
- 基于深度特征交互與層次化多模態(tài)...
- 反向聚焦細(xì)粒度多模態(tài)語(yǔ)義對(duì)齊的...
- 基于CLIP文本特征增強(qiáng)的剪紙...
- 基于完整超圖神經(jīng)網(wǎng)絡(luò)的捆綁推薦...
- 基于高階鄰域信息交互的自監(jiān)督異...
- 基于超圖和分層頻譜濾波器的序列...
- 針對(duì)圖像指代分割的訓(xùn)練后量化策...
- 基于信息互補(bǔ)與交叉注意力的跨模...
- 基于強(qiáng)化學(xué)習(xí)協(xié)同進(jìn)化算法求解柔...
- 融合實(shí)體鄰域信息的時(shí)序知識(shí)圖譜...
- 互補(bǔ)盲點(diǎn)策略和U型Transf...
- SP-POMDP:堆疊物體抓取...
- 基于果蠅協(xié)同算法求解雙目標(biāo)混裝...
- 優(yōu)化時(shí)間窗改進(jìn)Dijkstra...
- 帶頻繁區(qū)域的空間并置模式挖掘方...
- 輔助任務(wù)增強(qiáng)的知識(shí)追蹤方法...
- 基于沖突避讓的多智能體有效旁路...
- 基于特征融合的音頻偽造檢測(cè)方法...
- 基于多視圖舌象特征融合的中醫(yī)證...
- 多元異構(gòu)耦合網(wǎng)絡(luò)中競(jìng)爭(zhēng)性輿情信...
- 基于增強(qiáng)控制流圖與孿生網(wǎng)絡(luò)架構(gòu)...
- 獎(jiǎng)勵(lì)回溯DQN驅(qū)動(dòng)的多QoS工...
- 基于QUIC的擁塞控制算法動(dòng)態(tài)...
- CN2Conv:面向物聯(lián)網(wǎng)設(shè)備...
- 面向物流數(shù)據(jù)共享的可撤銷屬性加...
- 一種具有多級(jí)安全目標(biāo)的動(dòng)態(tài)對(duì)稱...
- 基于雙向數(shù)據(jù)流分析與圖抽象嵌入...
- 基于比特切片技術(shù)與指令集的LE...
- 基于隨機(jī)投影與改進(jìn)min-ma...
- 結(jié)合自適應(yīng)局部圖卷積與多尺度時(shí)...
- 基于圖元變換的建筑彩繪紋樣圖像...
- 雙流特征增強(qiáng)與融合的弱監(jiān)督時(shí)序...
- 多尺度降噪自編碼器的遮擋行人重...
- 基于深度正則化的三維高斯人體重...
- 基于雙曲空間的無監(jiān)督視頻異常檢...