優(yōu)化時(shí)間窗改進(jìn)Dijkstra算法的無(wú)人駕駛磁懸浮車路徑規(guī)劃
關(guān)鍵詞:軌道交通;磁懸浮車;智能路徑規(guī)劃;Dijkstra算法;優(yōu)化時(shí)間窗中圖分類號(hào):U292.4 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1001-3695(2025)07-021-2080-06doi:10.19734/j. issn.1001-3695.2024.12.0515
Abstract:Aiming at thecharacteristicsof multi-vehicleoperationonthesame trackandhigh vehicle densityofautonomous maglev,thispaper studiedapath planning algorithmformaglevbasedonoptimizedtime windowand improvedDijkstra’salgorithm,whichtook intoaccountaseriesofrealisticproblemssuchaspathconflictandschedulingcost,andcombinedDijkstra's algorithmwiththetime windowtosequentiallplanthepathsof individualmaglevs.Firstly,itpre-processed hemapiformationbeforepathplanning,then generatedtheshortestpath index according tothemap nodes,andfoundthepathsaccordingto theindex.Secondly,itusedthetime windowtocheckthepathswithorwithoutconflicts.Then,itanalyzedtheconflictpaths specificall,andchanged thespeedofvehicletoavoidtheobstaclewithshorterconflicttime,itavoidedthepathsreplanning, andoptimizedtheorderruning timeonthebasisofcolision-free.Finally,itusedtheOpenTCSsoftware tosimulatethealgorithm.Theresults show thatunder thesame conditions,theaverage executiontimeofthe Dijkstraalgorithm after optimizing the time window is 0.328ms ,and the vehicle running time per kilometer is 36.64 s. Under the premise of no conflict paths, it improvedthereal-timeperformanceoftheordersandthevehicleoperation eficiency.Astheoperating kilometers increases, theadvantagesof thealgorithmbecomeincreasinglyapparent.Theproposedalgorithmcanmettherequirementsofcolisionfree path planning for autonomous magnetic guided vehicles.
Keywords:rail transit;maglevguidedvehicle;inteligentpath planning;Dijkstraalgorithm;optimize time window
0引言
永磁懸浮無(wú)人駕駛軌道交通系統(tǒng)是未來(lái)城市公共交通的主要形式之一,車輛同向三軌運(yùn)行,分低、中、高三線軌道,車輛一般運(yùn)行于中、高速車道,啟動(dòng)、停車階段運(yùn)行于低速車道,不同軌道之間設(shè)置變道系統(tǒng),且同軌道同時(shí)多車運(yùn)行,所有車輛集中控制、無(wú)人駕駛,車流密度大,運(yùn)輸效率高。(剩余13060字)
-
-
- 計(jì)算機(jī)應(yīng)用研究
- 2025年07期
- 多模態(tài)行人重識(shí)別研究綜述...
- 語(yǔ)義通信在邊緣算力網(wǎng)絡(luò)中的應(yīng)用...
- 基于同態(tài)加密和零知識(shí)證明的區(qū)塊...
- HyperledgerFabr...
- PMoE:在P-tuning中...
- 基于大語(yǔ)言模型的多任務(wù)生成式重...
- 基于圖文對(duì)比融合的圖像人物情感...
- 基于深度特征交互與層次化多模態(tài)...
- 反向聚焦細(xì)粒度多模態(tài)語(yǔ)義對(duì)齊的...
- 基于CLIP文本特征增強(qiáng)的剪紙...
- 基于完整超圖神經(jīng)網(wǎng)絡(luò)的捆綁推薦...
- 基于高階鄰域信息交互的自監(jiān)督異...
- 基于超圖和分層頻譜濾波器的序列...
- 針對(duì)圖像指代分割的訓(xùn)練后量化策...
- 基于信息互補(bǔ)與交叉注意力的跨模...
- 基于強(qiáng)化學(xué)習(xí)協(xié)同進(jìn)化算法求解柔...
- 融合實(shí)體鄰域信息的時(shí)序知識(shí)圖譜...
- 互補(bǔ)盲點(diǎn)策略和U型Transf...
- SP-POMDP:堆疊物體抓取...
- 基于果蠅協(xié)同算法求解雙目標(biāo)混裝...
- 優(yōu)化時(shí)間窗改進(jìn)Dijkstra...
- 帶頻繁區(qū)域的空間并置模式挖掘方...
- 輔助任務(wù)增強(qiáng)的知識(shí)追蹤方法...
- 基于沖突避讓的多智能體有效旁路...
- 基于特征融合的音頻偽造檢測(cè)方法...
- 基于多視圖舌象特征融合的中醫(yī)證...
- 多元異構(gòu)耦合網(wǎng)絡(luò)中競(jìng)爭(zhēng)性輿情信...
- 基于增強(qiáng)控制流圖與孿生網(wǎng)絡(luò)架構(gòu)...
- 獎(jiǎng)勵(lì)回溯DQN驅(qū)動(dòng)的多QoS工...
- 基于QUIC的擁塞控制算法動(dòng)態(tài)...
- CN2Conv:面向物聯(lián)網(wǎng)設(shè)備...
- 面向物流數(shù)據(jù)共享的可撤銷屬性加...
- 一種具有多級(jí)安全目標(biāo)的動(dòng)態(tài)對(duì)稱...
- 基于雙向數(shù)據(jù)流分析與圖抽象嵌入...
- 基于比特切片技術(shù)與指令集的LE...
- 基于隨機(jī)投影與改進(jìn)min-ma...
- 結(jié)合自適應(yīng)局部圖卷積與多尺度時(shí)...
- 基于圖元變換的建筑彩繪紋樣圖像...
- 雙流特征增強(qiáng)與融合的弱監(jiān)督時(shí)序...
- 多尺度降噪自編碼器的遮擋行人重...
- 基于深度正則化的三維高斯人體重...
- 基于雙曲空間的無(wú)監(jiān)督視頻異常檢...