彎曲元布置形式和注漿方法對(duì)MICP膠結(jié)砂土小應(yīng)變剪切模量的影響
中圖分類號(hào):TU441 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):2096-6717(2025)03-0041-08
Effects of bender element arrangement and grouting method on small strain shear modulusofMICP-cemented sand
ZHANG Lei',ZHENG Yanlong2, x∪Tao3 ,LI Haoyu 1,4 ,HU Jian', SHI Jinquan1
(1.SchoolofCivil Engineering,Chongqing University,Chongqing 400045,P.R.China;2.No.92493 Troopsof PLA,Huludaol250o,Liaoning,P.R.China;3.SchoolofTransportation,SoutheastUniversity,Nanjing 211892, P.R.China; 4.China Construction Southwest Consulting Co.,LTD,Chengdu 61o041,P.R. China)
Abstract: In geotechnical engineering,the small-strain shear modulus of sand Gmax is an important mechanical parameter.The isotropic consolidation tests were carried out on artificial glasssand,combined with multidirection bender element tests.The efects of MICP reinforcement methods and bender element arrangement on Gmax of glass sand were investigated. The test results show that the development pattern of shear wave velocity Vs , small strain stiffness Gmax and stiffness anisotropy GHH/GHV of glass sands reinforced by different methods are different. After MICP reinforcement,the Gmax of glass sand is increased. Among them,“l(fā)ow pH one-phase method + direct back pressure after injection of reaction solution”has the greatest Gmax increase,and the smallstrain stiffness ratio (Gmaxload/Gmaxunload) has the maximum decrease. Due to the nonuniformity reinforcement, the placement height of bender elementon the side wallalso has acertain influence.Based on the test results in this study,it is recommended to arrange the HH and HV bender elements at the same plane to further discuss the effectof MICP on small strain stifness anisotropy. Otherwise,the test error caused by reinforcement inhomogeneity can not be avoided.
Keywords: multidirectional bender element;small-strain shear modulus;stiffess anisotropy;MICP reinforcement;low pH one-phase method
微生物誘導(dǎo)碳酸鈣沉淀(microbiallyinducedcarbonateprecipitation,簡(jiǎn)稱MICP)是一種新興的固化砂土方法,已經(jīng)成為土體加固領(lǐng)域中備受關(guān)注的技術(shù)之一。(剩余12908字)
-
-
- 土木與環(huán)境工程學(xué)報(bào)(中英文)
- 2025年03期
- 應(yīng)力主軸變化對(duì)黃泛區(qū)粉質(zhì)土各向...
- 基于光彈法的顆粒材料直剪試驗(yàn)剪...
- 土體熱力學(xué)性質(zhì)及本構(gòu)關(guān)系研究綜...
- 氧化鎂礦粉復(fù)配加固砂土的強(qiáng)度特...
- 彎曲元布置形式和注漿方法對(duì)MI...
- 黃原膠聯(lián)合微生物加固改善混合砂...
- 不同含水率花崗巖殘積土-格柵界...
- 基于精細(xì)有限元模型的云岡石窟穩(wěn)...
- 大足石刻北山佛灣訶利帝母造像風(fēng)...
- 水平荷載作用下能量樁群樁的變形...
- 基于三維離散元的巖爆突變點(diǎn)處動(dòng)...
- 雙線平行盾構(gòu)隧道任意布置方式下...
- 小曲率半徑盾構(gòu)隧道施工階段管片...
- 機(jī)制砂摻量對(duì)自密實(shí)輕骨料混凝土...
- FRP加固混凝土梁界面應(yīng)力的時(shí)...
- 基于AK-FORM方法和降維方...
- 雙向荷載下組合剪力鍵的剪切機(jī)理...
- 鋼橋面板疲勞裂紋全壽命周期擴(kuò)展...
- 基于可靠度理論的中低速磁浮車-...
- 張力腿基礎(chǔ)設(shè)計(jì)參數(shù)對(duì)大跨度浮式...
- 地質(zhì)聚合物砂漿凝結(jié)過(guò)程的超聲波...
- 錳基材料除磷研究綜述...
- 嶺南農(nóng)宅圍護(hù)結(jié)構(gòu)表面優(yōu)勢(shì)霉菌的...
- 基于機(jī)器學(xué)習(xí)的多孔生物炭吸附 ...